

Abstract— In this paper, we present an approach to testing of

models and generated code as well as of target interpreters

that relies on the use of modeling tools and model

transformation languages. When compared to the existing

Model Driven Development (MDD) approaches and tools

supporting Domain Specific Modeling (DSM), contributions of

our research include: (i) introduction of action reports, which

allow semantic actions on elements of a graphical interface for

modeling; (ii) creation of recommendations and of the interface

for integrating modeling tools with applications; and (iii)

construction of a language for the description of the structure

of user controls as well as construction of a component for

embedding such controls into modeling and meta-modeling

tools. The basic idea behind the approach is to use a

transformation language to construct complex objects and

applications as well as specify operations on complex objects

and the interface. In this manner, we not only generate the

target platform code from the select domain-specific graphical

language (DSGL) models but also directly use these models

and appropriate tools as client applications. The applicability

of action reports is demonstrated in the examples concerning

validation of document models and their generators.

I. INTRODUCTION

N the past few years, there have been increased efforts to

improve software engineering through the application of

software models. In numerous papers, there are remarks

that the adoption of Model Driven Software Development

(MDSD) and Unified Modeling Language (UML) as its main

language has only partially achieved the proclaimed goals

related to development productivity and software quality [1],

[2]. Some authors consider the unfitness of UML for domain

specific problems to be the main reason for this failure.

Expecting that an average software engineer uses or thinks in

domain independent abstractions might have been

unrealistic. Several approaches, including Domain Specific

Modeling (DSM), Model Driven Architecture (MDA) and

Model Driven Software Development, still focus on software

 A part of the research presented in this paper was supported by

Ministry of Education and Science of Republic of Serbia, Grant III-44010,

Title: Intelligent Systems for Software Product Development and Business

Support based on Models.

models, which are sufficiently formal but also

understandable to both machines and humans. These models

are not only part of the specification but also of the

implementation of the corresponding systems. In general,

there are two types of models: models that do not contain

information about the implementation platform (Platform

Independent Model, PIM) and models that contain platform

specific information (Platform Specific Model, PSM).

Abstract specifications are transformed into models using

Model-to-Model (М2М) transformations, or into executable

specification, such as source code, by using Model-to-Code

(M2C) transformations. This model transformation approach

has been known for decades. However, it is becoming more

and more popular nowadays because of the positive results

obtained by using DSM in software development for various

embedded systems.

In our approach, the application of MDD, DSM, and

model transformation principles is related to complex

problems in document engineering, previously presented in

[3]-[9]. Positive experience with the construction and

application of domain specific languages (DSLs), together

with the problems related to the development of client

applications for measurement and control systems, points to

the need the following transformation types to be introduced

(further explained in Section III):

 (sub)model to application (M2A);

 application to (sub)model (A2M); and

 (sub)model to document (M2D).

By employing these transformations, we intend to make

possible the use of modeling tools as client applications, at

least in the prototype development phase. Notwithstanding

the fact that current techniques for code generation from

models have great capabilities, we demonstrate herein the

practical value brought by:

 introduction of the submodel concept and high level

submodel operations in addition to repository operations;

 introduction of the transaction concept in the context of

(sub)models; and

 use of action reports (generators) as synchronization units

during the testing of models, client applications, and target

interpreters.

I

Using Action Reports for Testing Meta-models, Models, Generators

and Target Interpreter in Domain-Specific Modeling

Verislav Djukić

Djukić – Software Solutions

Nürnberg, Germany

Email: info@dvdocgen.com

Ivan Luković

University of Novi Sad

Faculty of Technical

Sciences

Novi Sad, Serbia

Email: ivan@uns.ac.rs

Aleksandar Popović

University of Montenegro

Faculty of Sciences,

Podgorica, Montenegro

Email:

aleksandarp@rc.pmf.ac.me

Vladimir Ivančević

University of Novi Sad

Faculty of Technical

Sciences

Novi Sad, Serbia

Email: dragoman@uns.ac.rs

mailto:ivan@uns.ac.rs

The action report concept is used as a paradigm for semantic

actions in M2A, A2M, and M2D transformations. Semantic

actions are operations that synchronize model property

values between the DSM tool, client applications, and target

interpreter.

In the academic community, much of the model

transformation research relies on the OMG’s specification

Query/View/Transformation (QVT) [10]. The specification

consists of three interrelated languages: (i) Relations, (ii)

Core and (iii) Operational Mapping. Atlas Transformation

Language (ATL) [11] by the Eclipse Foundation [12] is an

example of a model-to-model (M2M) transformation

language in accordance with the QVT standard. Among the

commercial tools, the best known transformation language is

MetaEdit+ Reporting Language (MERL) [13]. It is a

language mainly focused on model-to-text (M2T)

transformations. The approach we present herein relies on

the use of action reports. It features transformations that

conduct synchronization between the model, client

applications, and target interpreter. In this manner, model

testing and execution are made both quicker and simpler. By

using a generic component for action report parsing and

interpretation, it is possible to synchronize applications that

feature disparate user interfaces and interpreters [4], [14]-

[18].

Besides Introduction and Conclusion, the paper contains

six sections. In Section II, we describe the action report

concept and show how it differs from code generators in

popular meta-modeling tools. In Section III, we describe

M2A, A2M, and M2D transformations with respect to

application generation. In Section IV, we describe usage of

submodels and transactions in the testing of a language,

model, and target framework or interpreter. In Section V, we

describe high level domain-specific operations that are

implemented through action reports and executed on models.

In Section VI, we give an example of the synchronization

between a client application and modeling tool. Section VII

contains an overview of the current state of technology in

testing of meta-models, models, code generators, and a target

framework or interpreter.

II. A CONCEPT OF ACTION REPORT

Domain-specific modeling involves the use of generators,

also known as reports. They specify how to utilize

information from abstract models to generate code in

accordance with a particular concrete syntax [8], [13], [19],

[20]. Generator (report) is a program whose interpretation

yields a textual representation of the semantics expressed in

a model. Since transformation languages support model

filtering (selection of objects and relations according to a

criterion), submodel or model view is implicitly defined

through a generator. In order to have a more precise

definition and interpretation of operations on a submodel, we

require that the pertaining objects and relations be explicitly

declared.

The purpose of introducing action reports is to extend the

functions of model transformation programs (generators) to

include the synchronization between a modeling tool, target

interpreter and client applications that are not defined by a

meta-model. With regard to this purpose, we define action

report as a report that is used to transform a model into an

application as well as operations from external applications

into operations on visual representations of the model. Other

relevant action reports characteristics include:

 action report is defined in the context of a submodel;

 action reports may execute operations (and be referenced)

in the context of both concepts forming a meta-model

(modeling language) and objects that are not part of the

meta-model, i.e., any user control;

 all the communication between modeling tools and

external applications is in the form of textual commands

specified in the syntax of a generator language;

 action report is executed inside an optimized transaction

whose beginning and end are tied to valid model states;

 in addition to validation being carried out in accordance

with the specification of a domain-specific language, i.e.,

its meta-model, there are target environments that support

model interpretation during specification time; this

introduces the need for an operation that would calculate

specification increment between two model states;

 action reports feature frequent model view changes, i.e.,

frequent submodel redefinitions;

 when using models to manage business processes, action

reports may be used to synchronize business activities

prior to a switch to a new management model as well as to

incrementally generate documentation and applications;

 action reports are closely related to target interpreter

environments, which may vary greatly;

 action reports may be called both synchronously and

asynchronously; this requires that, at the meta-level, there

be a specification of calling rules, which may define order,

frequency, and logical conditions related to the call; and

 if the target interpreter does not support code modification

during interpretation time, the problem is reduced to the

recompilation of the generated code and the use of

appropriate debugging tools, which are often part of the

Integrated Development Environments (IDEs).

The role of action reports is illustrated in Fig. 1. They act

as an interface between the modeling tool and target

interpreter (or the debugging environment for the generated

code). The objective is to allow various user groups like

meta-modelers, modelers, testers, etc., to use an existing

DSM tool as a means of testing generated code and target

interpreter, in addition to model and DSL testing. Action

reports are not intended to be used for the description of

dynamic characteristics of a system. These characteristics

may be completely formally specified through UML state

diagrams or equivalent DSLs. Action reports may also be

used to allow direct use of the existing graphical interface in

debugging or testing of the generated code (or target

interpreter).

Fig. 1 Role of action reports

In [20] and [21], the authors present ideas and solutions

for domain-specific model debugging and transformations.

Our consideration of the role of code generator differs

slightly from the one presented in [20], in which the

generator is treated as a means for the definition of model

semantics. In certain cases, when the modeling language is

not sufficiently semantically rich, generators may be

temporarily used to describe semantics, i.e., surpass

problems caused by the conceptual limitations of the DSL.

This scenario is typical particularly for the DSL construction

phase.

We close the action reports introductory section with a

remark that the importance of action reports as defined

herein may significantly differ depending on the actual

context. In some business domains, the feedback that action

reports may provide to modeling tools has no relevance.

However, in the specification of measurement and control

systems through DSLs, action reports are essential and their

use brings numerous advantages [22], e.g., the modeling tool

may be used as a Human machine interface (HMI) by

exploiting the feedback from the target interpreter and there

may be different visual representations of a single language

concept.

III. A2M, M2A, AND М2D TRANSFORMATIONS

М2А/А2М transformations are basically М2Т/Т2М

transformations whose purpose and syntax variations have

been described in various papers. These transformations

have been applied also in numerous tools for code generation

from models [8], [12], [13], [20]. The motivation for

introducing M2A/A2M transformations is to allow us to

differentiate in code generation between: (i) procedures that

generate the code for the communication between modeling

tools and a target interpreter and (ii) procedures that generate

the code to be interpreted in the target interpreter. In this

context, the target interpreter is important as a component

that gives feedback for the refinement of both the model and

meta-model, i.e., DSL refinement. The reason for

introducing the notion of a M2D transformation is a need to

isolate the procedures for the generation of documentation

concerning the results of testing of models, meta-models, or

a target interpreter. Activities of testing and documenting of

the testing results for meta-models, models, and an

interpreter, are henceforth referred to as Meta-modeling,

Modeling, Interpreting and Documenting (MeMID)

activities.

The most important characteristics of М2А/А2М

transformations include:

 target text is a code in a general purpose language (GPL),

DSL, or any textual format interpretable by a modeling

tool or a target interpreter;

 target text is focused on operations involving reading and

value modification of repository properties as well as on

operations done on elements representing DSL concepts

(graphical interface, symbols that represent objects,

relations, etc.);

 these transformations may include operations on external

elements of the presentation that are not part of the

modeling tool (Fig. 2);

 these transformations do not modify the meta-model,

however it might be useful to support a semiautomatic

inclusion of user controls that graphically represent

language concepts; and

 when there is a disparity between the concepts directly

supported by the interpreter and those of the DSL, these

transformations provide an interface for the

communication between the relatively incompatible units.

In Fig. 2, we illustrate the scope area of М2А/А2М and

M2D transformations labeled “Action reports”. Action

reports are interpreted in the context of a modeling tool, a

repository, and client applications. They may be exchanged

between these contexts as well as updated in any of them.

Fig. 2 Scope area of transformations

By introducing these transformations we satisfy some of

the user requirements related to the more agile testing of

DSLs, models, and target interpreters. Our approach has

limited use in situations in which the target environment is

not present in the form of a generated code interpreter. In

that case, after each model modification, the code is

generated, then compiled, and the application is rerun. On

the other hand, it is not important at which abstraction level

operations executable by the target interpreter are. The

matching is done at the transformation level. The ideal

environment for MeMID activities is the one that supposes

the existence of the “universal interpreter” and does not

require termination of the interpretation in order to switch to

the interpretation of the modified model. These “hot”

switches to a new version of the model are known as

incremental updates. Universal interpreters that are

independent of the application domain do not exist. Any

generalization necessarily leads to a greater separation of the

language used to describe the problem from the language

interpretable by the interpreter. In practice, there is a

compromise to solve the widest possible class of problems

by using an existing interpreter of the similar purpose. In this

manner, at least in the system prototype development phase,

it is possible to have full parallelism in the refinement of the

meta-model (DSL), concrete models, code generator, and

interpreter.

With respect to the connectedness of meta-models and

models, modern tools vary greatly. Some tools support meta-

modeling only through textual syntax and feature weak

synchronization between meta-models and models [12].

Other tools consistently support abstract graphical models,

graphical DSL constructions, and different visual

representations for the same language concept as well as full

synchronization between the meta-models and models [13].

Different visual representations of a single language concept

allow animations, i.e., visual presentations of states during

interpretation [22].

The use of М2А/А2М transformations is illustrated with

the model debugging examples featured in the fourth and

fifth section. That sort of debugging is not equivalent to the

debugging inside GPL Integrated Development

Environments (GPL IDE). With the GPL-to-assembly

transformations, there is a finite, predetermined set of source

and target language concepts. On the other hand, in DSM

neither the source nor the target language needs to be known

in advance. Moreover, in directory publishing neither of

them is usually known in advance because the used

terminology is specific to a particular sector, region, or book

edition. The source language is constructed to meet the

domain-specific needs and the target code may substantially

depend on the existing libraries and frameworks. One of the

approaches to the formation of a stronger logical relationship

between debugging environments and modeling tools

includes the use of patterns. In this manner, it is generally

possible to relate the model to the target code. One

disadvantage of the use of patterns is that they need to be

created for each combination of a DSL and target platform.

The critical issue is how efficient the debugging of the

resulting code is when done through a GPL IDE that is

logically separated from the meta-modeling tool. This

problem is extensively debated and the proving of the

language validity is a topic of numerous papers and books

[2], [21].

Further discussion of MeMID activities is based upon an

assumption that the debugging rules or steps should be

defined inside the М2А/А2М transformations in order to

provide the feedback from target interpreter toward model.

IV. SUBMODELS, TRANSACTIONS, AND REPORTS IN THE

TESTING OF LANGUAGE, MODEL, AND TARGET INTERPRETER

Modeling tools usually support the concept of model

decomposition, which implies that an object, relation, role,

port, or property may be linked to a submodel. This allows

for a model to be described and expressed at different logical

levels. During model testing, it is necessary to focus on just a

subset of elements. For example, in CASE tools providing

creation of logical database models, it is possible to define a

database view. In our case, a user-defined model view is also

known as a submodel. It generally includes at least one

relation and two objects having a role in the relation.

Submodel is not just a selection of objects in the presentation

of the instances of language concepts, but it is similar to

database views. It is a complex object with its own structure,

operations, and constraints. Although (sub)model operations

and constraints are used to express fundamental dynamics of

the system described by the model, they are not sufficient to

express the rules for the translation of the model from one

consistent state to another. For this reason, modeling tools

should include support for the transaction concept.

Transaction is defined as an operation that validates a

sequence of actions on a model and updates the repository.

When compared to the database transaction, it also includes

validation of the generated code and of the target interpreter,

i.e., validation in the context of MeMID activities.

Therefore, we expect that modeling tools explicitly support

(i) submodels which, in addition to decomposition, include

selection of relations and objects; and (ii) MeMID

transactions.

The purpose of submodels and transactions is illustrated

by an example presented in Fig. 3. It is a typical example of

a fully automated MeMID activity. The diagram in the left

section of the figure features activities А1-А4 that are part of

the production of advertisements and related documents. One

of the activities (А2 – Standard ad production) is composite

and involves the use of DVAdLang, a domain-specific

language for the production of advertisements [6], [23]. In

the modeling tool, there is an object-subgraph relation

between A2 and an advertisement model. The subgraph is an

advertisement model that features a logo, several phone

numbers, and an email address (marked with M4). In the

upper right section of the figure, there are three abstract

advertisement models (M1-M3) in three consistent states

(S1-S3), all of them representing the same advertisement.

There are two levels of verification: (i) model verification

during design time, done by the modeling tool and in

accordance with the meta-model; and (ii) on-demand

verification of the generated code, usually executed on

transaction confirmation calls (in the figure marked by T1

and T2). Successfully completed transactions may represent

transitions between two model states or, as in this case, valid

advertisement states. In the model M4, there is the submodel

SM1 (a shaded rectangle with rounded edges) that includes

the following objects: Office (of type Place), two phone

numbers (of type Phone), and user’s email address (of type

eMail). The submodel also features relations In content unit

(the gray circle inside the submodel and to the left) and

Phone rings in (the telephone symbol in the center).

Transition from one diagram state to another, from

submodel S1 to S3, or between valid states, is verified by

PDF rendering using our interpreter. In this manner, we

obtained advertisement images, which are shown in the

lower section of Fig. 3. The rendered image may be: (i)

result of the transformation of a model in a valid state or (ii)

increment between two consistent model states. As

generators (reports) are associated with models, so

advertisement models in concrete syntax include the

definition of an action report in the form of metadata. The

Fig. 3 Submodels, transactions, and testing of models and the target interpreter

concrete syntax in the given example is a DVAdLang logical

script. During the interpretation of the concrete

advertisement model, the target interpreter interprets

synchronization commands defined through action reports

and sets corresponding property values in the report

definition. The modeling tool analyzes the modified action

report and runs operations on the graphical interface

elements. In the example featured in Fig. 3, as a result of the

executed operation, the text in the email symbol is

underlined. The transfer of action report packets between

modeling tool and target interpreter may be: cyclic (when

CPU is idle), in intervals, or on a specified condition (event).

Examples 1-3 further explain the contents of Fig. 3 and

include: (i) specification of the action report AR1, which sets

the text property Font.Underline in the objects in the

modeling tool, (ii) general form of a logical script (LS) with

metadata (ARMeta) that is used as a basis for document

generation, and (iii) concrete logical script that is a result of

the transformation done by the action report AR1 for the

advertisements shown in Fig. 3.

Example 1. The action report AR1 is defined using

DVDocRepLang [8], [24], a language similar to MERL. It is

presented in Listing 1. AR1 is applicable to all models that

are of the same type as М1-М4 from Fig. 3. It is used to

generate, in accordance with the syntax of DVAdLang

language, a logical script from the abstract models of

advertisements. AR1 contains a section that exports object

properties, and a description of semantic actions for

synchronizations marked by CALLTYPE and ACTION

keywords.

Report 'AR1'

CALL_TYPE = event; /*interval,cyclic,event*/

foreach >ContentUnit {

do .()

{

'<'type '>'

 if type = 'LOGO' then

 ID ',' :Alignment; ',' :Height;

 else

 :Value;

 endif

 newline

 dowhile ~Phones in>Phone connections~Phone

rings in.()

 {

 '<' type '>' :Value; newline

ACTION_BEGIN

'<STATE>'objID

:Font.Underline=true;

ACTION_END

 }

}

Listing 1. Action report example

The existing syntax of DVDocRepLang, which is used for

М2Т transformations, is extended with: (i) CALLTYPE

command for the declaration of conditions or intervals for

the exchange of action reports with the target interpreter, and

(ii) ACTIONBEGIN and ACTIONEND primitives, which

mark a report code section related to synchronization. In

Listing 1, the new language commands are marked in bold.

Example 2. The general form of a logical script given in

DVAdLang syntax, which is generated by using the action

report from Example 1, is presented in Listing 2. Global

metadata marker <ARMETA> contains the definition of an

action report. This definition is required by the target

interpreter during the whole synchronization process done

with the modeling tool and client applications.

<AR_META>="REPORT AR1..."

<CU>Initial logical script

<STATE>S1

<CU>Increment for S2 (Transaction T1)

<STATE>S2

<CU>Increment for S3 (Transaction T2)

<STATE>S3

Listing 2. Embedded definition of an action report in the target language

The <STATE>objID commands are used to mark code

sections responsible for the specification of document

content units, their appearance, and dynamic characteristics.

When the interpreter encounters the <STATE> command, it

interprets it as a request for the call of the transaction that

contains property-setting operations marked by

ACTIONBEGIN and ACTIONEND (in this case,

Font.Underline=true). All the actions, except the current

one, are removed from the action report, which is then sent

back to the modeling tool. On the reception side, in the

simplest case, it just sets the property value.

Example 3. A detailed specification of DVAdLang and

DVDocLang languages, together with examples, is given in

[3]. An example of a logical script presented in Listing 3

illustrates that the <STATE> command is used to: (i) mark

increments in the interpretation, e.g., breakpoints during

debugging; and (ii) mark, in the concrete model of an

advertisement, the point when the original action report gets

updated.
...

<LOGO>7937,center,10

<PO>Office

<RN>(0911)4313685

<STATE>S1

<RN>(0911)4313686

<STATE>S2

info@djukic-soft.com

<STATE>S3

Listing 3. Example of a logical script in the target language

Semantic action of synchronization through an action

report may be arbitrarily complex. It may include

incremental specification and rendering of documents inside

MeMID activities. In this particular example, since the target

interpreter is a document renderer, semantic action

represents both a proof of model execution and a rendered

documentation about model testing.

V. ACTION REPORTS AND OPERATIONS ON MODEL

The simplified scenario from the previous examples

includes interpretation of action reports featuring basic

semantic actions that are reduced to setting the value of a

single property. A more advanced scenario might include the

mailto:info@djukic-soft.com

use of action reports to: (i) construct submodels and carry

out all operations on (sub)models without the need for the

execution of low-level API functions on the repository, (ii)

define transactions, and (iii) conduct synchronization with

client applications, e.g., those classified as HMI.

The construction of submodels and corresponding

operations is similar to the definition of views in relational

databases or the definition of complex objects in object

databases. We focus on operations that could significantly

improve MeMID activities when the modeling tool is linked

to the target interpreter via action reports. Therefore, we give

an overview of the select operation set:

 CreateSubmodel (listOfElems) – creates a submodel

based on the specified list of objects, connections,

relations, roles, and properties from an existing model;

 SetCurrentSubm (m_ID) – sets one of the defined

submodels as the current one;

 DeleteSubmodel (m_ID) – deletes the submodel

definition;

 AddModel (m_1,m_2) – joins two submodels into one

without modifying any relations;

 Subtract (m_1,m_2) – removes m_2 from the existing

composite model m_1;

 Multiply (m_1,n) – creates a new model by repeating the

model m_1 n times;

 Intersection (m_1,m_2) – returns a model containing

intersecting element from m_1 and m_2;

 Union (m_1,n) – joins two models without repeating

elements having same identifiers;

 SimDifference (m_1,m_2) – finds a symmetric difference

between the two models;

 Remove (objType|relType) – removes objects or relations

of the specified type from the submodel; and

 Clone (objType|relType|roleType) – clones the complete

model or just object, relations, roles, and properties of the

specified type or matching the specified pattern.

These operations on models may be specified through

action reports in the section marked by ACTIONBEGIN

and ACTIONEND. At the level of modeling tools,

interpretation is done by the code generator. At the level of

target interpreter and client applications, interpretation is

done by the DVDocRepLang [8], [24] component, which is

similar to the MERL interpreter. An example of parallel

interpretations is given in the subsequent section.

VI. AN EXAMPLE OF SYNCHRONIZATION BETWEEN

APPLICATION AND MODELING TOOL

Although the target interpreter and external applications

are not a part of the modeling tool, it is necessary to allow

their simple integration and use in MeMID activities. A

generic solution to this problem would be difficult to

produce because there is no universal model interpreter.

Therefore, we restrict ourselves to the pragmatic approach

that utilizes action reports and common properties of

visualization elements in the modeling tool and external

applications.

In Fig. 4, we illustrate the relationship between the

elements that are part of the MeMID activities during: (i)

specification of reports and actions; and (ii) interpretation.

Firstly, properties of graphical elements in the modeling tool

are linked to properties of HMI client application

components (Property linking). DVDocRepLang supports

automation of this activity to a large extent. The selected

subset of common properties is the object of the semantic

action marked by ACTION_BEGIN and ACTION_END. An

action report may contain more than one action.

In the upper left section of the figure, there is an

illustration of the function block object with four input and

two output parameters (properties). The lines ending in dots

represent disconnected roles in the relations between

function blocks. In the upper right section of the figure, there

is a user component showing input and output values in the

form of a rectangle, except for a logical type property

(represented by a circle) whose value is false. In the case of

the value true, the circle to the right is filled.

Synchronization during interpretation time is represented by

curved lines with arrowheads. The modeling tool generates

code based on the generator specification and forwards this

specification through the generated code as metadata. During

interpretation, at the marked synchronization points, the

interpreter sets the values of properties included in the

definition of the action. For instance, the operation may be

reduced to the modification of a string: from :in3; to

:in3=2.54;. This translates into the modification of the value

of the in3 property to 2.54.

In comparison with the existing MERL syntax, property

referencing is extended with the property value setting.

Fig. 4 Editor of common properties, action specifications, and

synchronization

The modified report is forwarded to: (i) modeling tool for

the purpose of modifying interface properties and (ii) HMI

client application for the purpose of setting the values for

visualization controls. The action report interpreter resides in

both the modeling tool and the client application. Report

exchange is performed periodically or on a certain event that

is not time dependent.

VII. STATE OF TECHNOLOGY IN MEMID

The tracking of model changes presents an important

research topic of practical relevance to MDD community. In

[22], the authors introduce new features of MetaEdit+

Workbench [13] and present various capabilities for

visualizing language concepts of a DSL, including dynamic

modification of appearance properties. MetaEdit+

Workbench is a tool that provides support for various

development phases including meta-modeling, modeling,

code generation, and simulation of the modeled system. In

our approach, we borrow two well-established ideas that are

implemented in modern database management systems:

transactions and views. By relying on transactions, we are

able to track object modifications, which are explicitly stated

inside action reports.

Any target system may use MetaEdit+ API over web

services to perform model manipulation. In this regard, our

approach offers similar functionalities concerning

(sub)model modification. One of the main advantages is that

the deployment of action reports eliminates the need for low-

level API functions on the repository side. As a result, the

specification of target interpreter feedback is less complex.

In [21], the authors report the lack of support for model

debugging in DSL tools. While most of GPL IDEs support

model debugging because language syntax and semantics are

known in advance (and because there is a compiler), the

situation concerning DSLs is substantially more complex.

Standard debugging scenario is conceptually restricted by

operating systems, target frameworks, and libraries.

Therefore, any pragmatic approach featuring even minor

improvements related to MeMID activities is going to

represent a significant contribution to the testing of domain-

specific models.

VIII. CONCLUSION

In this paper, we present the first practical results and

foundations of an approach aimed at further improvement of

DSM tools. Our objective is to automate to a greater extent:

(i) MeMID activities; (ii) testing of models, generated code,

and interpreter; and (iii) generation of documentation about

test cases. In the areas of document engineering and

development of measuring and control systems, the action

report approach gives good results, especially when

combined with DSM tools that, instead of relying on

patterns, conduct M2T transformations by using a dedicated

language and interpreter. Our further research is directed at

the implementation of additional operations on submodels

and testing of the approach in different application domains.

REFERENCES

[1] Steven Kelly, Juha-Pekka Tolvanen, "Domain-Specific Modeling:

Enabling Full Code Generation", ISBN: 978-0-470-03666-2, March

2008, Wiley-IEEE Computer Society Press.

[2] Anneke Klippe, Software Language Engineering: Creating Domain-

Specific Languages Using Metamodels, Addison-Weslay 2008, ISBN:

0-321-55345-4

[3] Verislav Djukic, "DVDocLang Language Reference", Accessed:

March, 2012 www.dvdocgen.com/Framework/DVDocLang.pdf

[4] Ivan Lukovic, Verislav Djukic, DVDocLang vs. XSL-FO,

www.dvdocgen.com/Framework/DVDocLang_XSL-FO.pdf

[5] Kosar T., Oliveira N., Mernik M., Pereira M. J. V., Črepinšek M.,

Cruz D., Henriques P. R., "Comparing General-Purpose and Domain-

Specific Languages: An Empirical Study", Computer Science and

Information Systems (ComSIS), ISSN: 1820-0214, Vol. 7, No. 2, May

2010, pp 247-264.

[6] Verislav Djukić, Ivan Luković, Aleksandar Popović, "Domain-

Specific Modeling in Document Engineering", Proceedings of the

Federated Conference on Computer Science and Information Systems,

Poland, 2011

[7] Ivan Lukovic, Verislav Djukic, "DVQL Language Specification",

www.dvdocgen.com/Framework/DVQL.pdf, Accessed: March, 2012

[8] Verislav Djukić, Aleksandar Popović, "DVDocRepLang grammar

specification", www.dvdocgen.com/Framework/

DVDocRepLang.pdf, Accessed: March, 2012

[9] Ivan Lukovic, Pavle Mogin, Jelena Pavicevic, Sonja Ristic, "An

Approach to Developing Complex Database Schemas Using Form

Types", Software: Practice and Experience, ISSN: 0038-0644, Vol.

37, No. 15, 2007, pp. 1621-1656.

[10] Meta Object Facility (MOF) 2.0 Query/View/Transformation

Specification, http://www.omg.org/spec/QVT/1.0/,.

[11] ATL - a model transformation technology,

http://www.eclipse.org/atl/

[12] Eclipse Modeling Framework Project (EMF) ,

http://www.eclipse.org/modeling/emf/

[13] MetaEdit+ Workbench, MetaCase, www.metacase.com

[14] Apache Software Foundation: "FOP",

http://xmlgraphics.apache.org/fop/0.95/index.html

[15] Microsoft Extensible Application Markup Language (XAML),

http://xml.coverpages.org/ms-xaml.html

[16] User Interface Markup Language (UIML), http://www.uiml.org/

[17] Verislav Djukic, "DVDoc Renderer Benchmak", Accessed: March,

2012 http://www.dvdocgen.com/Framework/DVDocRenderBench.pdf

[18] Verislav Djukic, DVDocGen Framework, application interface,

http://www.dvdocgen.com/Framework/DVDocFramework.pdf,

Accessed: March, 2012

[19] Olivier Beaudoux, Arnaud Blouin, "Using Model Driven Engineering

technologies for building authoring applications", Proceedings of

ACM Symposium on Document Engineering, 2010

[20] Benjamin Klatt, "A Closer Look at the model2text Transformation

Language",

http://wiki.eclipse.org/Model2Text_using_Xpand_and_QVT_for_Que

ry

[21] Raphael Mannadiar, Hans Vangheluwe, "Debugging in Domain-

Specific Modelling", SLE'10 Proceedings of the Third international

conference on Software language engineering

[22] MetaEdit+ 5.0 Beta Primer, Accessed: May, 2012

http://www.metacase.com/download/metaedit/MetaEdit+ 5.0 Beta

Primer.pdf

[23] Verislav Djukić, DVDocFlowLang demo , video, Accessed: March,

2012 http://www.dvdocgen.com/Framework/DVDocFlow.wmv

[24] Verislav Djukić, DVDocRepLang demo, video, Accessed: March,

2012

http://www.dvdocgen.com/Framework/ModelTransformation.wmv

http://www.metacase.com/download/metaedit/MetaEdit+%205.0%20Beta%20Primer.pdf
http://www.metacase.com/download/metaedit/MetaEdit+%205.0%20Beta%20Primer.pdf

