
Using Domain-Specific Modeling for Integration of

Heterogeneous Business Activities

Verislav Djukić
1
, Marko Bošković

2
, Aleksandar Popović

3
, Ivan Luković

4

1Djukic – Software Solutions, Germany, info@djukic-soft.com
2Research Studios Austria, Austria, marko.boskovic@researchstudio.at
3Faculty of Science, University of Montenegro, aleksandarp@rc.pmf.ac.me

4Faculty of Technical Sciences, University of Novi Sad, Serbia, ivan@uns.ac.rs

Abstract. This paper presents an approach to integration of heterogeneous

business activities based on software models and four-level architecture of

Domain-Specific Modeling. Business activities are modeled using document

templates which contain description of both static and dynamic characteristics

of a system. Document templates are managed using software models in

different Domain-Specific Graphical Languages. Document content increments

and layout changes are related to progress in business activities. It is shown

how to manage different models of document production at the highest possible

level of abstraction. The majority of this paper is dedicated to the code

generator, used for transformation of abstract layout and lifecycle models to

different concrete specifications, such as XML, HTML, PDF, SVG and

DVDocLang.

1 Introduction

Theory and practice of Model-Driven Software Development (MDSD) has recently

meet many demanding requirements placed in front of Software Engineering. Gener-

ally, to apply MDSD techniques, there are two directions: one is the use of General-

Purpose Modeling Languages such as UML, and the second is Domain-Specific

Modeling (DSM) with Domain-Specific Languages (DSL) [14,16]. The notable in-

crease in development productivity, the quality of code that is generated from abstract

models, as well as flexibility of constructed systems in such way is a clear motivation

for applying DSM methodology in wider and more complex domains. Current experi-

ences in the deployment of MDD in document engineering justify an application of

both DSM principles and DSL-s in specification and production of documents. Two

currently popular modeling tools are MetaEdit+ Modeler [1,4] and Eclipse Modeling

Framework (EMF) [22]. The first tool is commercial and already long time available

at the market, while the second one is the result of the wider initiative to develop a

free tool for the industry purpose. Apart from some advantages, current shortcomings

of the EMF technology make it oft unattractive to software engineers in industry. The

main practical reasons which significantly hinder the use of EMF are:

 A lack of repository for fast access to meta-data;

mailto:aleksandarp@rc.pmf.ac.me

 Incompatibility of current with previous versions;

 Weak synchronization between created meta-models and models; and

 Weak support for refinement of DSL-s.

EMF allows creating extensions of the supported concepts. In this way, some com-

panies have significantly customized and improved EMF and by this established their

own internal standard for the application of EMF in their industry projects.

The main goal of this paper is to present an approach to integration of heterogene-

ous business activities based on DSM and DSL-a. We also present DVDocIDE, an

integrated development environment that supports Model-Driven Document Engi-

neering. Our approach deploys (i) principles of Model-Driven Development method-

ology described in [1,3,4], (ii) Document Engineering, described in [2,7,9,15,29], and

(iii) the MetaEdit+ Modeler tool. For the problem illustration we use examples from

the domain of Directory Publishing. To apply MDD in Document Engineering, till

now we have developed the appropriate DSL-s, a Domain Framework, and PDF and

HTML renderers, as described in [8,15,18]. In this paper we present:

 Management of document templates using domain-specific abstract models;

 Use of DSL diagrams for model-driven business applications;

 A language for transformation of abstract to concrete document templates; and

 A semantically based template editor, named DVDocEditor that supports our ap-

proach to the management of document templates.

The paper is structured as follows. In Section 2 we present a running example of

document production model. A use of DSL-s for specification and management of the

production model is given in Section 3. Section 4 outlines the use of DSL diagrams in

business applications. The code generator and the DVDocRep Language for transfor-

mation of abstract to concrete document models are described in Section 5. In Section

6 we present a DSM approach based on the usage of an appropriate semantically

based graphical editor, as an alternative to existing topologically oriented editors. In

Section 7 is conclusion.

2 An example of document production model

For the purpose of illustration of DSM usage, we introduce here an example of a

realistic document-centric system for production of business advertisements with its

accompanying documents. In Fig. 1 it is presented the state-activity graph of the

example. From all the requirements that depict a complex nature of such production

system, we emphasize the following ones:

 Every change or progress in activity is documented with an appropriate PDF

document. In other words, every state of a lifecycle is being documented;

 Production of logos can be manual or automatic. It is preferable to produce adver-

tisements using as simple as possible Domain-Specific Language;

Fig. 1. A production model in Directory Publishing

 Different companies have different business rules and different legacy applications

for automation of production;

 Documents must be in PDF format due to the required layout and print quality. For

the last document states web page with the same content are generated;

 The number of document types and possible deviations from a base type is large

and it is important to enable systematic refinement of their modeling language;

 Every activity can have its own DSL for specification of content units; and

 Synchronization of activities is carried out using messages or events whose pa-

rameters are PDF documents.

By this, we identified and presented here a list of requirements which is in some ex-

tent simplified and generalized. This generalization allows their recognition in various

business domains. In the following text, we discuss specific concepts that are included

in the activity graph from Fig. 1.

3 Construction and use of DSL for specification and

management of production models

 Using MetaEdit+ Modeler [4] a DVDocFlow DSL is constructed. DVDocFlow is

aimed at expressing reporting rules within the business activities. The example of a

usage of its main concepts is illustrated by Fig. 1. DVDocFlow language concepts are

similar to the UML state/activity concepts. It includes concepts of state and activity,

but also some specific concepts, such as: content units, layout elements, as well as

appropriate relations, roles and ports. The main reason why we developed our own

DSL instead of deploying UML for modeling specific business activities is in the

following: Our goal was not to support software modeling and code generation only,

but also document production management by means of software models. Besides,

UML is a family of general purpose languages and a lot of meta-modeling customiza-

tions are needed to address all the problem domain requirements.

On the diagram from Fig. 1, states, activities and documents are put in relations.

For the reasons of simplifying, only one content unit “Offer items” has been shown. It

is a symbol left in the middle of the Fig. 1. Layout concepts are not shown. However,

they are discussed in Sections 4 and 5. In the production model for “Offers” the fol-

lowing activities have been identified:

 A1- Verification of pages in the contract – A composite activity consisting of the

verification by the ordering, executive and publishing entities;

 A2 – Advertisement production – It may be based on: (i) general purpose tools not

using meta-data or (ii) simple DSL-s;

 A3 – Logo production – It is mainly based on general purpose tools;

 A4 – Calculation of production and publishing price. It is preferable to carry out

the activity automatically, by applying already specified business rules; and

 A5 – Verification of payment data.

Apart from activities, relevant states have been identified in the document lifecycle.

The states are denoted in Fig. 1 with dotted rounded rectangles. The first state in Fig.

1 is “Empty document”, while the last one is “Document ready”. Edges decorated

with the icons of three small circles in Fig. 1 specify reporting activities – in which

state and how it is being reported. Those are the n-ary relations. When a PDF icon is

associated to the relation, the state that is in relation with an activity is being docu-

mented by rendering a PDF document. The analogous holds for the web browser icon

associated to the relation, when an HTML page is generated. Activities A1, A4 and

A5 are similar in their nature, while A2 (small ad production) and A3 (logo produc-

tion) are specific. A2 is the activity that is supposed to be fully automated by using

DSL-s. A more detailed description of a language for automation of A2 has been

given in [6,8,18]. The requirements to tools for construction of the modeling language

are to: (i) provide a flexible way of modeling production specifics in different organi-

zations; (ii) reduce a number of document templates; and (iii) provide a production

management by means of a graphical interface.

The first requirement is satisfied by supporting various complex production mod-

els. In one case, as an example, A2 and A3 do not exist as separated, but rather as one

activity. The second case is that the activity A2 is very complex, when there are dif-

ferent advertisement production models for different types of advertisements. The

third possible case is that the production offer is one completely automated activity

comprising the whole document formal description and generation. In many real

cases, the verification of data about ordering, publishing and production entities are

carried out within one activity. The problem becomes complex due to a demand to use

the same document layout templates for different production models. Additionally,

there are organizations whose activities are subjects to rigorous rules of quality as-

sessment and work scheduling, where a document becomes the only mean of proof.

Our point of view is that the content, structure, layout, behaviour and meta-data

should be viewed as logically related document dimensions, in order to provide tools

for their specification and rendering. There are some recent initiatives, ideas and

small implementations in [10,21,22,23,24] trying to put in relationship layout and

content definitions, but not all dimensions.

4 The use of diagrams in business applications

Here we demonstrate the benefits of using DSM tools for business process man-

agement. DVDocFlow language, modeling tool and code generation can be used:

 As graphical interface for client applications;

 For integration of individual DSL for some particular purpose;

 For implementation of a workflow engine; and

 For implementation of a document management system (DMS).

Pictures and meta-data used on a particular instance of graph can be exchanged

with client applications using properties and generators. A collection of objects is

traversed and an XML structure is created, that contains identifications and state

names, as well as positions and symbol dimensions of objects. If there are composite

states, XML contains also an identification of the appropriate sub-graph. It is useful to

integrate all meta-models of individual DSL-s to one meta-model. Over the XML

structure, whose schema is implicitly defined using graph and this generator, the fol-

lowing generic operations are implemented:

 Select all documents for a given state and type: SelectWhere(docType,stateID);

 Select all documents for given type, neglecting their state: SelectAll(docType);

 Go to the next document state: NextState(docID,stateID);

 Assign a figure to the state: SetInstancePct(docID,pctID);

 Display a composite state: ExpandState(docID,steteID);

 Generate an application for a transition: CreateApp(docID,nextState);

 Find the activity that leads to particular state : ActivityForState(docID,stateID);

 Render PDF or HTML: CreatePDF(docID), CreateHTML(docID);

 Display an instance in a particular state: ShowInState(docID, stateID); and

 Display all instance states: ShowAllStates(docID).

Using these generic operations, a part of functionality for the workflow engine and

document management system is implemented. End-user document management is

based on client application (Fig. 2) and meta-data placed in each document instance.

Fig. 2. A control that uses formally described production models in DSL

The set of document instances can be used as a database [19], and in that case, some

operations of browsing are traversing meta-data from PDF or HTML files. More de-

tailed description of all meta-data is given in [6].

Fig. 2. shows a user control in which are implemented operations for browsing and

incremental specification and rendering of documents. For the purpose of DVDocIDE

synchronization with MetaEdit+ Modeler, a plug-in has been made, whose source

code and videos that demonstrate control can be found in [28]. User control in Fig. 2.

uses graph and metadata from the MetaEdit+ Modeler. Selection of all documents for

a given state is called with double click of mouse on the target state. By means of the

upper-left corner toolbar buttons we provide: (i) the overview of all instance states;

(ii) the overview of the DVDocFlow textual representation in DVDocLang format;

(iii) the insertion of metadata from the archive; and (iv) the call of MetaEdit+ Mod-

eler to edit the production model. Drop down list contains all documents that are se-

lected according to the given criteria. Using the PDF button and the browser symbol,

a PDF or a HTML document is shown, respectively. Applications are generated in-

crementally, on a state change request. The arrow is a transition invocation in some of

the next possible states. When scrolling over a particular state image, an overview of

the document in that state is given. Depending on the number of documents and their

production kind, some of the operations are implemented using SQL queries over

database. These queries are generated using MERL code generator and there is no

need for writing them separately for each production model.

5 Code Generation and transformation of abstract to concrete

models using DVDocRepLang

This Section describes DVDocRepLang, a language for transformation of platform

independent (PIM) to platform specific document models (PSM). From the perspec-

tive of DSM architecture, this is language for specification of code generators. Com-

paring to the EMF and MetaEdit+ Modeler, this language offers large possibilities for

transformations of layout attributes. It can be used for any graphical editor that is

implemented in .Net. Beside explicitly given properties, it is also possible to get/set

system properties of .Net UserCtrl-a, as well as, properties of other controls for visual

presentation of content (text editors, tables, figures, etc.). A particular attention is paid

to simplify transformations of topological and semantic relationships between layout

elements. Detailed description of DVDocRepLang with his syntax and examples is

given in [20]. Code generator in Example 5.1 illustrates structural patterns and is re-

lated to the Fig. 3.

Input in the transformation is at least one diagram and at least one report generator.

Inputs can be also files, console input data, parameters and results of some other gen-

erators. The output of the transformation is texts and figures, organized in textual

streams and files. Parts of the content can repeat to several outputs.

Diagram elements are referenced using the following commands: for object

.[name;], for relations >[name;], for roles #[name;], for ports ~[name;] for proper-

ties :[name;]. Collections and loops are being declared using the FOREACH

{setDef} command, where setDef, is a constant or a set of diagram elements of the

same type. They can be filtered using the WHERE 'pattern*' command and sorted

using 'ORDERBY' orderCriterion {',' orderCriterion} command. Branching is

specified using IF (cond) THEN (block) ELSE (block). Loop and branching com-

mands can be nested. The generator interpretation starts from one or a collection of

objects, relations or roles and traverses the diagram. Internally, the current element

and current output is saved on the stack.

Fig. 3. DVDocIDE for modeling and meta-modeling of document templates

Properties and outputs can belong to different semantic domains. Built-in functions

are also supported; mostly those supported by .Net over String, Math, Picture, Date

etc. classes. Parts of the output stream can be kept in variables, then manipulated by

some functions and then returned to the current stream. Sub-generators can be in-

voked with parameters. The text editor is equipped with finisher and text highlighter.

The main advantage of our language and the tool is that they can, at the same time, to:

 Simply transform some parts of a graph to different target frameworks;

 Transform to different Domain-Specific Languages;

 Transform semantic to topological relations;

 Reference on properties defined in DSL and system properties; and

 Validate templates and transformation by the means of incremental document ren-

dering.

To the best of the knowledge of authors, there are no other tools providing all these

functions in a unified manner.

Example 5.1: The 'Structural Patterns' generator is intended for the generation of

patterns which are primarily used to describe overall document structure. Pattern con-

tains specification of rules necessary for validation of input data during the document

production process. Pattern may be used to create initial document. Recently, several

works has been published which use different language grammars for the definition of

structural patterns [5,7,9]. We have decided to define a specific language that is sim-

ple and expressive enough. The main concepts of the language for the pattern defini-

tion are elements, ordering, cardinality and relations. The list of elements can be ei-

ther ordered or unordered. Cardinalities are denoted as follows:

 * - for allowance of arbitrary number of appearances;

 + - for one or more appearance;

 ? – for mostly one appearance; and

 x…y – for an interval of appearance, from… to.

Set of posible topological relations is fixed, and comprises relation such as: IsLeft,

IsBellow, etc. Structural patterns are defined over elements, without considering their

layout attributes. The example shows the generator that generates such patterns and

then gives an overview of some typical structural patterns.

REPORT StructuralPatterns

 foreach {>}

 { 'PATTERN PAT_' :dsmName; ' OL('

 foreach {~}

 {

 :dsmName; ','

 } ') '

 :relPos; ' ('

 foreach {~}

 {

 :dsmName; ','

 } ') END' nl

}

ENDREPORT

The first loop traverses all relations and for each of them creates a new pattern. The

second and the third go through all roles that are used for connecting objects to rela-

tions (e.g. Tables and texts in Fig. 3) and take the names of the roles. Property

':dsmName;' denotes object, relation or role name. The output looks like:

PATTERN

 PAT_Contracting

 OL(Customer[1..1],Publisher[1..1],OfferItems[1..2])

 IsLeft(Customer,Publisher)

END

PATTERN

 PAT_Pricing OL(OfferItems[1..1],Price[1..1])

 IsBellow (OfferItems,Price)

END

The name of the first pattern is PAT_Contracting, and it contains an ordered list of

data about the customer, publisher and the offer items. All of them are mandatory and

for one customer two tables with items are allowed. All elements are in the

Rel_Contracting relation. Topological relations are expressed by: IsLeft, IsBellow,...

Some typical patterns are:

PATTERN A OL(B,C,D) END

Interpretation: Element A consists of three elements that can be in the given order.

PATTERN A UL(B,C,D) isLeftOf(C,D) isBelow(D,B) END

Interpretation: Element A consists of three unordered elements, but C has to be left

from D and D on the top of B.

PATTERN A UL(B,C[3..5],D) END

Interpretation: B appears only once, C from 3 to 5 times аnd D exactly one. Ele-

ments can be in any order.

PATTERN A OL(B*,OL(C,D)) END

Interpretation: First appears B arbitrary number of times, then C and D.

6 Semantic based graphical template editor

Template editor is a part of the DVDocIDE and it is intended for specification of doc-

ument layouts and their dynamic characteristics, i.e., dynamic characteristics of busi-

ness processes that are modeled using such documents. Semantics of the relationships

between content units is specified using PIM-s. Every content unit, regarding its com-

plexity, can be associated with an activity that creates such a content unit. Using this

relationships of content units and activities, and using the specification of lifecycle

that is described in Fig. 1, the DVDocIDE generates transformation formulas that

enable incremental specification and incremental rendering of documents [6,15,18].

The logical model of document templates transformed into concrete syntax is called a

logical script. A simplified version of such a logical script looks like:

<CU.layout_1_ID>Content 1
<STATE>state_1_ID

<CU.layout_i_ID>Content i
<STATE>state_i_ID

<CU.layout_n_ID>Content n
<STATE>state_n_ID

State_i_ID is an identifier of the i-th state, which a document reaches if the i-th

content and layout are defined. Thanks to such a way of binding elements of layout

and content, with dynamic characteristics, the same template can be used for different

production models. Particularly important is the fact that the document is rendered up

to the arbitrary i-th state, and that in the non-terminal state, documents can change

their layout as well as content and behaviour. If we return to the example in the Fig. 1

this means that during the production we manage diagrams. Videos that demonstrate

incremental specification and document rendering are given in [25,26,27,28].

7 Conclusions

Comparing to the tools of the same purpose, one of the main advantages of our tool

for specification of templates is that it provides a clear differentiation of meta-

modeling and modeling. Meta-modeling is used for defining objects of presentations

and their styles, relations, roles and ports. Modeling is used for constructing both

document instances and their types. Since DVDocEditor provides modeling objects,

relations and semantic domain specifications, it may be also used for logical data

modeling. Furthermore, it provides a synchronization with MetaEdit+ Modeler and a

software development tool IIS*Case [29]. One of the main benefits of our approach is

that we have provided a language, code generator and tool for transforming abstract to

concrete document templates. Its practical applicability has been proven in some

commercial projects.

8 Related works

Olivier Beaudoux and Arnaud Blouin presented in [23] a framework for graphical

components based one MDE technology. Code generating or transformation of ab-

stract to concrete models is limited to stereotyped concepts. Benjamin Klatt in [24]

introduced Xpand language for transformation graphics to so called out-domain lan-

guages. They discussed their template languages in details. However, they did not

present a method of handling document layout, structure and dynamic properties.

9 References

1. Steven Kelly, Juha-Pekka Tolvanen, "Domain-Specific Modeling: Enabling Full Code

Generation", ISBN: 978-0-470-03666-2, March 2008, Wiley-IEEE Computer Society

Press.

2. Robert J. Glushko, Tim Mc Grath, "Document Engineering", MIT Press 2008.

3. Anneke Klippe, Software Language Engineering: Creating Domain-Specific Languages

Using Metamodels, Addison-Weslay 2008, ISBN: 0-321-55345-4

4. MetaEdit+ Modeler, MetaCase, www.metacase.com

5. Di Iorio, A. Pattern-based Segmentation of Digital Documents: Model and

Implementation, Ph.D. Thesis, UBLCS-2007-05, Department of Computer Science,

University of Bologna, 2007.

6. Verislav Djukic, "DVDocLang Language Reference", Accessed: March, 2012

www.dvdocgen.com/Framework/DVDocLang.pdf

7. Antonina Dattolo, Angelo Di Iorio, Silvia Duca, Antonio A. Feliziani, Fabio Vitali,

"Structural patterns for descriptive documents", Proceedings of the 7th international

conference on Web engineering, Italy, Lecture Notes In Computer Science, 2007

8. Ivan Lukovic, Verislav Djukic, DVDocLang vs. XSL-FO,

www.dvdocgen.com/Framework/DVDocLang_XSL-FO.pdf

9. Angelo Di Iorio, Luca Furini, Fabio Vitali, "Higher-level Layout through Topological

Abstraction", ACM DocEng 2008

10. Apache Software Foundation: "FOP", http://xmlgraphics.apache.org/fop/0.95/index.html

11. Microsoft Extensible Application Markup Language (XAML),

http://xml.coverpages.org/ms-xaml.html

12. User Interface Markup Language (UIML), http://www.uiml.org/

13. Verislav Djukic, "DVDoc Renderer Benchmak", Accessed: March, 2012

http://www.dvdocgen.com/Framework/DVDocRenderBench.pdf

14. Kosar T., Oliveira N., Mernik M., Pereira M. J. V., Črepinšek M., Cruz D., Henriques P.

R., "Comparing General-Purpose and Domain-Specific Languages: An Empirical Study",

Computer Science and Information Systems (ComSIS), ISSN: 1820-0214, Vol. 7, No. 2,

May 2010, pp 247-264.

15. Verislav Djukic, DVDocGen Framework, application interface,

http://www.dvdocgen.com/Framework/DVDocFramework.pdf, Accessed: March, 2012

16. OMG Model Driven Architecture, http://www.omg.org/mda/

17. Exstensible Stylesheet Language, Formatting Objects (XSL-FO), Reference Manual,

http://www.w3.org/TR/xsl/.

18. Verislav Djukić, Ivan Luković, Aleksandar Popović, "Domain-Specific Modeling in

Document Engineering", Proceedings of the Federated Conference on Computer Science

and Information Systems, Poland, 2011

19. Ivan Lukovic, Verislav Djukic, "DVQL Language Specification",

www.dvdocgen.com/Framework/DVQL.pdf, Accessed: March, 2012

20. Verislav Djukić, Aleksandar Popović, "DVDocRepLang grammar specification",

www.dvdocgen.com/Framework/ DVDocRepLang.pdf, Accessed: March, 2012

21. Colin Atkinson, Thomas Kühne, "The Essence of Multilevel Metamodeling", Proceedings

of the 4th International Conference on The Unified Modeling Language, Modeling

Languages, Concepts, and Tools, Springer-Verlag London

22. Eclipse Modeling Framework Project (EMF) , http://www.eclipse.org/modeling/emf/

23. Olivier Beaudoux, Arnaud Blouin, "Using Model Driven Engineering technologies for

building authoring applications", Proceedings of ACM Symposium on Document

Engineering, 2010

24. Benjamin Klatt, "A Closer Look at the model2text Transformation Language",

http://wiki.eclipse.org/Model2Text_using_Xpand_and_QVT_for_Query

25. Verislav Djukić, DVDocRepLang demo, video, Accessed: March, 2012

http://www.dvdocgen.com/Framework/ModelTransformation.wmv

26. Verislav Djukić, DVDocFlowLang demo , video, Accessed: March, 2012

http://www.dvdocgen.com/Framework/DVDocFlow.wmv

27. Verislav Djukić, Using DVDocIDE , video, Accessed: March, 2012

http://www.dvdocgen.com/Framework/UsingDVDocIDE.wmv

28. Verislav Djukić, Using MetaEdit+ from DVDocIDE , video, Accessed: March, 2012

http://www.dvdocgen.com/Framework/DVDocIDEMetaEditCtrl.wmv

29. Ivan Lukovic, Pavle Mogin, Jelena Pavicevic, Sonja Ristic, "An Approach to Developing

Complex Database Schemas Using Form Types", Software: Practice and Experience,

ISSN: 0038-0644, Vol. 37, No. 15, 2007, pp. 1621-1656.

http://www.dvdocgen.com/Framework/DVDocRenderBench.pdf
http://www.dvdocgen.com/Framework/DVDocFramework.pdf
http://www.dvdocgen.com/Framework/DVQL.pdf
http://www.eclipse.org/modeling/emf/
http://wiki.eclipse.org/Model2Text_using_Xpand_and_QVT_for_Query
http://www.dvdocgen.com/Framework/ModelTransformation.wmv
http://www.dvdocgen.com/Framework/UsingDVDocIDE.wmv
http://www.dvdocgen.com/Framework/DVDocIDEMetaEditCtrl.wmv

