

 Abstract — The paper presents an application of Domain-

Specific Modeling (DSM), Domain-Specific Languages (DSLs),

code generators and appropriate target interpreters in

document engineering, specifically in the design and production

of electronic and printed documents. In contrast to some other

application domains, the design of documents and document

templates usually results in a large number of models and model

variations with a requirement for their validation to be

incremental and exceptionally fast. Another distinction is about

requirements concerning spatial arrangement of document

elements. To provide modeling document variations and multi-

level modeling we deploy the concept of a modifier and an

extended concept of deep instantiation. Special care is paid to

the synchronization between models and generated code, as well

as to the improvement of user interfaces of document modeling

tools. In the paper, we illustrate the application of our approach

in a production of untypical document instances and an

automated refinement of the DSL for specification of documents

and their templates.

Keywords: DSM, document engineering, templates, model

refinement, M2T/T2M transformations, incremental

rendering, model evaluation

1. Introduction

s the disciplines of Domain-Specific Modeling (DSM)

and Domain-Specific Languages (DSL) constantly

grow and evolve [1], new possibilities for their incorporation

into the document engineering as a complex application

domain constantly appear. Modern DSM tools can be

successfully combined with target interpreters (i.e. document

renderers) using model-to-text (M2T) and text-to-model

(T2M) transformations. In this way, they become a powerful

environment for model execution, as well as debugging of

document types and instances during the rendering.

However, the following requirements appearing in practice

of document modeling prevent a wider application of the

existing DSM tools in the document modeling process:

 A part of the research presented in this paper was supported by

Ministry of Education and Science of Republic of Serbia, Grant III-44010,

Title: Intelligent Systems for Software Product Development and Business

Support based on Models.

 A need to handle potentially large number of document

instances and document templates;

 A need for a precise specification of topological

relationships between layout elements. This kind of

relationships is predominant in document modeling,

requiring special care;

 A need to provide end-users with a textual modeling

interface together with visually oriented modeling tools,

due to a strong practical requirement to make the

modeling process as fast as possible; and

 A need for numerous and efficient refinements of

document templates, as well as a modeling DSL itself,

with a strong requirement to keep the compatibility with

already produced instances.

On the other hand, the expected benefits of a deployment

of DSLs in the document modeling process are: (i)

simplifying the process by providing problem domain

concepts at the appropriate level of abstraction; (ii) a use of

metadata and their embedding in every document instance;

(iii) a possibility to transform abstract models into different

target languages for rendering under different interpreters;

and (iv) a possibility of simultaneous testing of document

templates and documenting test results in a readable PDF or

HTML format.

In the paper we present our approach to document

modeling and rendering process, named DVDoc Apporach.

It is a result of the research and application of DSM in

document engineering. Practical benefits of DVDoc

Approach are illustrated through a case of document

production including a large number of untypical document

instances. Besides, the modeling process is provided by a

simple textual modeling interface.

Apart from a presentation of DVDoc Approach, we also

discuss in the paper pros and contras of our DSL with

respect to CVL – a language for the description of model

variations [35], from the point of their usability in document

modeling. Besides, we present different modeling interfaces

necessary to provide easier description of variations and give

proposals for a concrete syntax based on abstract models.

Finally, we propose a construction of a domain specific

A

Modeling Untypical Document Instances using

Domain-Specific Languages

Verislav Djukić

Djukic – Software Solutions

Nürnberg, Germany

+49 (0)911 4313-686

info@djukic-soft.com

Ivan Luković

University of Novi Sad

Faculty of Technical Sciences

Novi Sad, Serbia

+381 (0)21 4852-445

ivan@uns.ac.rs

Aleksandar Popović

University of Montenegro

Faculty of Science

Podgorica, Montenegro

aleksandarp@rc.pmf.ac.me

Marko Bošković

School of Computing and

Information Systems

Athabasca University, Canada

marko.boskovic@athabascau.ca

mailto:ivan@uns.ac.rs

query language that unifies queries over meta-model, model,

and generated code.

Beside Introduction and Conclusion, this paper has seven

sections. In Section 2 we consider shortcomings of current

technology in modeling documents and templates. In Section

3 we give an overview of related work and specifically the

CVL language for description of model variations. In

Section 4 we introduce the notion of an untypical instance,

which requires model variations and automated refinement

of models and the modeling DSL. In Section 5 we explain

the concept of a modifier. It provides specification of

untypical instances at different abstraction levels. The

refinement of the model, meta-model and target interpreter is

described in Section 6. In Section 7 we present the use of our

query language DVQL [19] aimed at performing document

analyses and thus enriching the modeling tool interface. In

Section 8 we present in short a declarative language for

transforming model templates into text specifications that

conform to any previously defined syntax.

2. State of the Art and DSM Approach

A deployment of modern software engineering

achievements in formal specification and production of

documents in various formats is expected to provide new

solutions to several important problems in this application

domain in the future. As the most important, we consider the

following: (i) discrepancy between relatively simple

document layout and its complex specification; (ii)

discrepancy between expected and achieved layout quality at

different consol devices and with different interpreters; (iii)

very large resource consumption in document production,

especially in real systems with a large number of untypical

instances; and (iv) limited usability of existing ISO and IEC

recommendations for meta-data for simultaneous tracking

layout and document lifecycle. In academic research

communities it is widely accepted opinion that XML

languages, and particularly XML Schema language, are fully

appropriate to provide a high quality description of

document types, structures and contents [2, 7, 9, 11, 12, 17].

During the last several years, considerable efforts are

invested in the development of XSL-FO language for layout

specification [10, 17]. Following practical experiences,

however, we may say that the current state of the rendering

technology based on XSL-FO could not always satisfy strong

requirements concerning the response time, layout quality, as

well as the required level of simplicity and integration of the

document production process [8]. The formal specification

of documents by means of XSL-FO language is a task often

more complex than classical programming in a general

purpose programming language (GPL). Therefore, it needs

to be simplified so as to raise the level of its practical

applicability. For this reason, in different application

domains, various DSLs and the appropriate generators are

developed. Alternatively, GPLs with the appropriate libraries

are also used [3, 14].

Numerous shortcomings of the existing tools for

specification of document layouts are even more dominant

than shortcomings of DSM tools [24]. Those are: (i) despite

that layout modeling tools provide code generation, there is a

weak or even no synchronization between created models

and generated code; (ii) a lack of modularity; (iii) a complex

user interface for creating models and model variations; (iv)

impossibility of any modeling language adaptation; and (v)

impossibility of defining various viewpoints on created

models. Besides, model testing is appeared to be even more

complex due to the low response time of the rendering

process, as well as the noticed incompleteness of the XSL-

FO renderers, as target interpreters [10].

Our DVDoc Approach with the appropriate tools and

languages, implemented and integrated in DVDoc

Framework [15], is based on the DSM architecture [1, 33].

DVDoc Framework comprises the tool for template

description (DVDocEditor) and document renderer

(DVDocRender) with the corresponding infrastructure,

repository (DVDocRep), the tool for administration

(DVDocAdmin), query language (DVQL) and several client

applications for document specification, rendering and

querying. In the scope of DVDoc Approach, we developed a

graphical tool for meta-modeling and modeling, as well as

the appropriate textual DSL, named DVDocLang. Videos

demonstrating its use can be found at [27, 28, 29].

DVDocEditor and DVDocLang provide modeling static and

dynamic characteristics of documents [6]. We have also

developed a DVDocRepLang language and the appropriate

code generator [20, 26]. They are used to transform abstract

specifications into the concrete ones that are rendered by

DVDocRender. DVDocLang has been designed to efficiently

provide: (i) modeling of untypical instances that are

frequently occur in practice; (ii) the use of business process

software models so as to control the document production

process [16, 27, 29]; and (iii) the automated refinement of

templates by deploying the existing language concepts or by

introducing the language extensions.

Many existing tools for document production provide

specifications of just topological relationships between

content units (CUs) and thus significantly reduce the

expressivity of models being created. These tools do not

support transformation of abstract models to target models.

Impossibility of the model transformations into arbitrary

target language significantly hinders the model validation.

However, model validation is a very important task in

practice, in the process of creating document layouts.

Besides, a lack of knowledge about the nature of

relationships between CUs, as well as the roles of CUs in

these relationships significantly reduce possibilities of a

practical application of documents in modeling static and

dynamic characteristics of a system being considered. Our

goal is to provide a way to resolve the aforementioned

problems by the DVDoc Approach. It is done by introducing

a framework with a flexible specification language that

provides modeling document templates and instances, as

well as further language customizations.

In this paper the notion of "untypical document instance

production" is used to denote a document production process

that provides an effective control of all document variations

in the model validation and execution activities.

Document models may be seen, at the same time, as a kind

of models of business activities in a system being observed.

From this perspective, a document is a composition of CUs

used for reporting about each state change or just a progress

in business activities. To meet this requirement, a document

is considered as a formal structure of well-formed CUs,

presented in an electronic format and suitable for printing.

In DVDoc Approach, we deploy DSM and incremental

document rendering techniques to overcome shortcomings of

the existing technologies. The following features have

already been provided: (i) a User-Driven Modeling (UDM)

of document types based on modeling document instances;

(ii) specifying variations of untypical document instances at

different levels of abstraction; (iii) automated refinement of

document type specifications by performing analyses of

already created instances; (iv) incremental and full document

rendering; and (v) an analysis of the equality of various

layouts generated by applying different templates or template

variations on the same document instance data.

Our experience from various industry projects reports that

nowadays one of the essential problems preventing a wider

application of DSM tools in document engineering is a lack

of user-friendly oriented meta-modeling and modeling

interfaces. Meta-modeling interfaces provide design of meta-

models, while modeling interfaces provide designers a

possibility to use all the meta-model concepts and create

their models in an efficient way. In our opinion, it is crucial

to provide designers the interfaces of the following types:

 Graphical representations and operations over meta-

modeling concepts [30,31];

 Operations for maintaining repositories of models [4,32];

 Action reports embedded into M2T and T2M

transformations and code generators [30,31];

 Domain-specific query languages providing query and

manipulation operations over models and meta-models;

and

 Textual representations of DSLs, meta-models, and

models.

There are lot of issues related to creation or improving

meta-modeling and modeling interfaces that may be a matter

of an extensive research in document engineering domain. In

this paper, we address two of them. One concerns providing

designers a textual representation of DSLs, meta-models, and

models. The second is about deploying different modeling

interfaces in automated refinement of meta-models, models,

transformations and target interpreters. In Section 6 we

consider possible solutions to these issues through a common

model of automated refinement.

For the construction, fast implementation and testing some

of our DSLs, we have used MetaEdit+ Workbench. As an

implementation of domain-specific query languages, we have

developed DVQL [19]. It is a query and command language

aimed at browsing the logical and implementation properties

of document models under development.

3. Related Work

At present, we are not aware of any research related to

DSM and meta-models of document templates with specific

concepts covering description of untypical instances. For this

reason, we refer to a Common Variability Language (CVL)

[35]. It is a generic language for modeling variability in

models in any DSL that is based on Meta Object Facility

(MOF). Although conceptually quite comprehensive, CVL

still does not offer an adequate support for handling

untypical document instances. The following practical

constraints limit the use of CVL for this purpose:

 The language for pattern, i.e. fragment specification has to

provide the differentiation between patterns of content,

structure, functionality and layout, because all of these

categories are relevant in the specification of template

variations;

 Specifying CVL fragments and their referencing needs to

be more intuitive and thus easier for use by average users;

 Specification of a large number of variations at the level

of a model significantly diminishes model understanding

and usability.

 Specification of variations needs to be provided as a UDM

activity, due to a requirement of systematic gathering and

classification of variations;

 A specification of variations needs to be provided not only

at the level of models, but also at the level of submodels

(specific CUs), as well as a target language to which the

models are transformed. In practice, it is motivated by the

requirement that the effects of a variation may be scoped

to different abstraction levels. For example, variation

effects may be scoped to: instances of a particular

document type; CUs; subtypes of CUs; variations

specified recursively on a particular type, etc.

 For the purpose of document refinement, it is important to

provide specification of operations over variations and

their analyses through the template specification activity.

For this purpose users need to be provided with a

declarative domain-specific query language which is

applicable over the modeling DSL.

Patterns play an important role in solving the problem of

specifying variations. There are a lot of references covering

application of patterns in DSM. In [34] and [36] the authors

address understanding pattern construction and

classification. In [34], the process of creating UML profiles

for particular domains is presented. In [36] it is discussed the

role of patterns in constructing valid DSLs.

In DVDoc Approach, a document is considered as a

domain-specific five-dimension entity [9], whose dimensions

are: content, structure, layout, behaviour and meta-data. For

this reason, DSL patterns for document templates may

include more than one of these dimensions. Additionally,

there is a need to provide various kinds of referencing

patterns to specify the scope of pattern effects, as well as the

time of pattern interpretation. Patterns may be referenced at:

(i) design time of meta-model; (ii) design time of models, i.e.

templates; or (iii) interpretation (rendering) time of

document instances. To the best of our knowledge, present

references do not address the issues related to

contextualization of multidimensional patterns in an

adequate way.

In contrast to general purpose languages for specifying

model variations, in DVDoc Approach we provide the

DVDocRepLang language [20]. It is used for specification of

patterns at the level of a code generator. Allowed variations

of every model are specified using a generator, i.e. report,

which produces a set of pattern definitions as its output, for a

model given as its input. A check of the variations of some

model instance is performed over a set of defined patterns.

That allows for more freedom in work with instances that are

not fully specified using the modeling DSL only. It is

because patterns can express the kind of semantics that is not

always expressed explicitly by means of modeling DSL only.

That "additional" semantics is also considered during

automated DSL refinement. During the refinement process,

the meta-model is extended and the level of pattern generator

commonality is raised.

Another topic of related research is about multi-level

modeling. The most recent advances in this field are related

to the concept of deep instantiation. In [21, 37], a concept of

deep instantiation supported by DeepJava is presented. We

address the similar concept in this paper in Sub-section 5.4,

as well as in [27, 31].

4. Single Document Production with

Untypical Instances

Since we observe a document as a structure of well-

formed CUs in electronic format that is suitable for printing,

a document instance may be recognized as untypical with

respect to the environment or a producer. The aspect of an

environment refers to the quality of software framework for

document production. The aspect of a producer refers to the

experience and capability of users to produce a document in

a selected environment. The commonality of both aspects is

that the document instance is not completely untypical, but

often just one CU is seen as untypical. When untypical CU

documents a particular business activity, a tie-up in

production of such a document has the same effect as a tie-

up in performing the business activity. Despite that the

activity provides an increment of the document content, a

software environment is not capable of its verification on the

basis of the document specification itself. On the other hand

side, in an ideal case, there is a request that only well

structured documents are to be used in the verification of

business activities. It is a case in various application domains

that are based on document-centric systems dealing with

transaction documents. As a rule, in such systems document

layout is as important as its content. A typical example is the

document production system in Directory Publishing, where

the main products are advertisements (ads) that are to be

published.

Fig.1 depicts a process of single document production

based on DSM. The first, a meta-modeller creates a DSL.

Then, by means of a modeling tool and the DSL being

created, modellers specify documents, i.e. both document

types and document instances. To raise the productivity, a

modeller may easy produce documents by referencing

already created document templates and CU layout styles,

and then just entering document instance data. A validation

of document models is done in the document rendering

process. Instances that cannot be produced in this way are

considered as untypical ones. The environment aspects

influencing the appearance of untypical instances refer to the

modeling framework, which is depicted in Fig. 1 by means

of wide arrows. There are three typical environmental causes

of having untypical instances: (i) a lack of the appropriate

modeling concepts embedded into the DSL; (ii) imprecise

M2T transformations from abstract to concrete document

templates; and (iii) insufficient powerfulness of the target

interpreter, i.e. document renderer.

Fig. 1: A document production based on DSM

The document production handling a large number of

untypical document instances is inefficient and expensive,

particularly if general purpose graphical or text tools are

used. The appearance of an untypical instance diverts

production activities from the expected workflow and

decreases the level of their automation. The main

characteristics of untypical instances with respect to the

impact on the document production process are:

 During production, untypical document instances cannot

be abstracted as any known type or template, or cannot be

described using existing DSL concepts, or cannot be

rendered;

 A document producer is capable of perceiving untypical

document instances by using his or her own experience,

personal creativity, and the level of knowledge the of

modeling framework and language;

 A significant increase of a number of untypical instances

recognized in practice may be caused by some of the

following factors: (i) the modeling language is not

semantically rich enough for a particular domain; (ii) the

template definitions and template variations are

incomplete; and (iii) the users have inappropriate

knowledge of the modeling language or they feel

difficulties in its deploying through the existing modeling

framework;

 Untypical instances are also the ones for which M2T

transformation cannot produce the expected outcome or

for which a spatial distribution of CUs is inappropriate;

and

 A document having an untypical instance is most often

specifiable. It can be rendered up to the beginning of a

certain CU, as well as from its end.

Single document modeling is characterized by two

important facts. The first one is that for users it is far easier

to construct documents using domain-specific concepts of

the appropriate level of abstraction. For those reasons, a use

of graphical DSLs is completely justified. The second fact is

that users spend most of their time for entering instance data

and frequent switching from textual to graphical interface,

which significantly slows the production process. Therefore,

a synchronization of graphical and textual model

representations, as well as a synchronization of model and

code is a still open issue in DSM [24], and specifically in

document production process. The current state of our

research related to issues reported in [24] may be found in

[30, 31]. Here we just outline the main topics of these

research activities:

 A synchronization between models and generated code;

 A use of action reports as M2T and T2M transformations

and interfaces to the generated code, interpreter

environment, and models;

 A use of generic functions and a query language as

modeling interfaces;

 An intensive construction and application of submodels

and transactions;

 Testing the target interpreter and transformations; and

 Automated documenting of testing process.

The rest of the text about untypical instances is related to

the single production of advertisements and associated

documents in Directory Publishing. Such a single production

covers an incremental, user-driven modeling of documents.

It includes validation of temporary document states,

submodels and state-to-state increments through document

rendering. To address the aforementioned issues in such

kind of document production we propose improving the

meta-modeling and modeling interfaces by providing: (i)

specifications of document variations and synchronization of

abstract and concrete models at the level of code generator;

(ii) a systematic refinement of the DSL by means of an

analysis of already produced instances; and (iii) a domain-

specific query and command language for manipulation over

meta-models, models, and generated code. In the remaining

sections we present all of the three improvements, while a

particular attention with more details has been paid to the

first two.

5. A Modifier as a Descriptor of Document

Variations

A DVDoc modifier of documents and their templates, or a

modifier for short, is a DVDocLang concept used to specify

variations of document instances from the template or

variations of document templates. By DVDoc modifiers a

designer may specify variations:

 At the level of all meta-model concepts: graph, object,

relation, role, port and property;

 For all layout types, such as: texts, tables, lists and figures;

and

 At the level of the target language concepts used in

generated code.

In our approach, we provide embedding meta-data into the

document instances, as well as the inheritance from logical

and implementation concepts, such as template, pattern, or

concrete PDF or HTML document. Thanking to that, as well

as to modifiers, the practical problem of continuous increase

of a number of new and logically unrelated templates may be

solved. In practice, if users recognize the existence of

untypical instances they may resolve it without modifiers

only by introducing new templates. However, these new

templates are formally different, despite that may be very

similar to some of the previously created ones. In this way,

an explosion of a number of templates may occur. On the

other hand side, by applying modifiers, instead of

introducing a new template, a user may introduce a variation

of the existing one. In this way, it may be guaranteed that the

same template may be successfully used to generate various

document instances, including those ones that were

previously recognized as untypical. The application of

modifiers also allows for:

 A simplification of concrete textual syntax of the

modeling language;

 Avoiding problems in document production caused by

using incompatible languages and formats; and

 Systematic refinement of DSL meta-models.

A higher level of automation of the document production

process is also achieved by applying modifiers onto already

created document instances, stored in a repository or a

document management system. Besides, modifiers are

applied to specify variations of model driven client

applications or applications automatically generated from

models, as it is presented in [18, 23, 29, 31].

To illustrate a practical motivation for a consideration of

document variations, in Fig. 2 we present a base document

layout with its two variants. It is an example of the document

layout of the "Offer" document type. A base layout is

presented in the left hand side of Fig. 2, while two variations,

one of a table CU and the other of a text CU, are presented

in the right hand up and down sides.

In the base definition, the TbBase table with ads has two

columns, within which the content is aligned to the left. The

text on the right hand down side under the table is the ad

price. The first variation of the TbBase table, marked as

TbSingle, is presented in the right hand up side. The content

of the first column is right aligned, while the content of the

second one is left aligned. There is also one text line more

with the "Final version of LOGO for AD_3 is not ready"

remark at the end of the table. The text with the price has the

same position as in the base layout. The second variation of

the TbBase table and the text is market with TbMore. Those

are two tables with one centered column only. Under each

picture, an empty cell for notes is placed. In the base layout,

the same cell is placed in the second column. For TbMore,

the following rule applies: The number of columns to be

shown is equal to the number of alternatives for ads with

logos, but at least one and the most three are allowed. The

price is under the table, left justified, spread in three lines.

The document layout from Fig. 2 is used in the examples

given in the following text.

The document from the Fig. 2 is a typical example for

which a single document production using the general

purpose tools such as Winword or CorelDraw, would be

slow. In these tools, variations of content units cannot be

specified in a formal way. DVDocEditor [28], as a DSM tool

for modeling of documents and templates, provides a

creation of semantic relationships between CUs, description

of variations and their automated classifications. Each

variation is to be validated by generating a PDF document.

The transformation language is similar to the MERL. It is

simple and flexible enough to be applied to any DSL [20,

26].

For the purpose of illustration of various approaches in

template modeling, as well as a relationship between abstract

and concrete syntax, MetaEdit+ Workbench [4] has been

used. In contrast to DVDocEditor, it is much more suitable

for a fast construction and testing of graphical DSLs and

their simple transformations to the concrete syntax. The

target language used for transformation of abstract models is

DVDocLang. More details about DVDocLang a reader may

find in [6, 8, 13], where we have presented its syntax, a

comparative analysis to XSL-FO with a large number of

examples, as well as the rendering response times on the

target interpreter.

In the following text, we illustrate three modeling

approaches how to create DSL scripts in the concrete syntax

that are based on the subtyping concept. The concept of

subtyping denotes a relationship between two templates,

where a template object has a role of the subtype of another

template object. It is specified by means of a set of new

Fig. 2: Document layout variants

properties, or by applying default new values of the existing

ones. The properties may be of the different document

dimensions: layout, content, structure or dynamic

characteristic properties.

We present examples of a template subtyping with and

without the application of modifiers, as well as a subtyping

via modifiers only, without object subtyping. In general, a

language designer decides about the scope of modifiers

being modeled, when they are applied from document

instances, by selecting the appropriate language expressions.

In our DSL, various language expressions provide default

scoping of modifiers (i) to a current instance of a CU; (ii) to

an instance and the CU type within the current document;

(iii) globally, i.e. to the whole document instance; and (iv) to

all subsequent instances that will be produced latter on. In

DVDocLang, a named modifier is of the type (i), i.e. it is

scoped to a concrete instance of a CU, for which it is

applied. Unnamed modifiers are of the type (ii), i.e. they are

scoped to an instance and the type of CU within the

document instance. In our example, these are the tables of

the TbBase type. Global modifiers are of the type (iii), while

proactive modifiers are of the type (iv).

For practical reasons, we decided not to create specific

language constructs just to define the scope of a modifier

explicitly. Instead, common language constructs are used

with their default scoping of modifiers. Such an approach

makes the design process faster and more efficient.

5.1. Subtyping via properties or unnamed

modifiers

By Fig. 3 we illustrate a usage of the template subtype

concept on a document presented in Fig. 2. A model from

Fig. 3 is just one of many possible abstract models that may

be used to generate various concrete template specifications

from the same abstract model, by means of the same code

generator, and by applying different DSL concepts.

Fig. 3: An abstract model with subtyping via properties

Two types of CUs are given in Fig. 3: tables and texts. CUs

are represented by rectangles. Properties are denoted with

small double-rectangles. Templates are related to properties

using the subtype relation (S). The following template

subtype objects are created: TbSingle, TbMore and

TxLefTbMore. The following subtype relations are

established: S(TbBase, TbSingle), S(TbSingle, TbMore) and

S(TxBase, TxLeftTbMore). Values of the properties are

redefined as: COLOR, COL_ALIGN(1), COL_ALIGN(2),
MULT_RULE, ROWS, AL and POS.

By examples 1-10, given in the following text, we present

selected modeling techniques based both on graphical and

textual interface.

While in Fig. 3 we illustrate modeling of subtypes directly

via properties, in Example 1 we illustrate how subtypes are

derived by predefining values of a set of simple properties or

by introduction of the subtype specific properties. According

to this, the simplest concrete syntax is of the form

<CUid>value, where CUid is a CU type identifier and

value is a property value. Such textual representation of

document models given in a concrete syntax is named in our

approach as "DSL script" or "logical script". In our

approach, DSL scripts are given in the DVDocLang

language.

Example 1: Here we present in the concrete syntax a DSL

script representing the document instance data. The script

conforms to the document "Offer" from Fig. 2. It illustrates

modeling of subtypes directly using properties.

The Base Variant:

<TbBase>AD_1;;Notes ...

<TxBase>Price...

The TbSingle variant:

<TbSingle>AD_1;;Notes...

Final verision of LOGO for AD_3 is not ready

<TxBase>Price...

The TbMore variant:
<TbMore>AD_1;;Notes...

<TxLeftTbMore>Price...

Texts of the form AD_1;;… specify the contents of tables

from Fig. 2, where ;; is a cell separator and each new line is a

row separator.

The abstract model from Fig. 3 is transformed into the DSL

script of a template using MERL generator [4]. The

generator is presented in Example 2, while the generated

template is given in Example 3.

Example 2: A template generator providing subtyping via

properties is given:

Report 'Subtyping by properties'

'[' id ']' newline

'<TEMPLATE>=sybtype_of:BaseTemplate' newline

foreach .ContentType

{

do ~SubtypeOf ~BaseTypeFor.ContentType

 {'<' :Name;1 '>=INHER_FROM:' :Name; ','

 }

 do ~SubtypeOf>BaseOrSubtype

 {

dowhile ~RedefPropsForSub.LayoutProp

 {

 :PropertyName ':' :PropertyValue ','

 } newline

 }

}

endreport

Example 3: A generated template with subtypes, specified in

DVDocLang is of the form:

[Subtyping by properties]

<TEMPLATE>=sybtype_of:BaseTemplate

<TbSingle>=INHER_FROM:TbBase,ROWS:7,

COLOR:Green,COL_ALIGN(1):right

<TbMore>=INHER_FROM:TbSingle,MULT_RULE:2,

COL_ALIGN(1):center,COL_ALIGN(2):center

<TxLeftTbMore>=INHER_FROM:TxBase,AL:left,

POS:left

To generate a complete document specification, a DSL

script from Example 1 is to be combined with this template

specification.

In this, as well as in the following approaches to the

specification of abstract templates, we may use a concrete

syntax of the form: <CUid.p1: v1, p2: v2, pn:

vn>value, where p1:v1, p2:v2, pn:vn is a list of

simple properties with their values. We call it "unnamed

modification" and such simple properties "unnamed

modifiers". In Example 4 we give such a DSL script for the

TBSingle variant of the template. The table identifier is

always the same (TbBase), while the variations are given by

means of a property list. If there is a significant raise of a

number of unnamed modifiers in DSL scripts, then a better

classification and more precise definition of templates is

needed.

Example 4: A DSL script for TbSingle with simple

properties is given as:

<TbBase.COLOR:Green,COL_ALIGN(1):right,

ROWS:7>AD_1;;Notes...

Final verision of LOGO for AD_3 is not ready

<TxBase.AL:left,POS:left>Price...

It is semantically equivalent to the TbSingle variant from

Example 1. The difference is that TbSingle does not have to

be explicitly derived as a subtype using transformations,

while properties have to be given at the base type TBase.

A common characteristic of Examples 1, 2 and 3 is that the

variations are defined in the model, as well as in the code

generator. Since a semantic is formally specified at the level

of model relations and transformation formulas, we have a

possibility to provide not only direct transformations from

models to DSL scripts, but also the inverse transformations

from DSL scripts to models, without loss of information.

5.2. Subtyping via named modifiers

To further extend our DSL with neccessary domain

specific concepts for templates modeling, we introduce a

new meta-type, called the "named modifier". It is used for

grouping and identifying sets of properties that are often

used.

As it may be noticed in In Fig. 4, a named modifier is

depicted with the symbol <Mod:>. Properties are grouped

into non disjunctive subsets using the equivalence

relationship, denoted with . Each subset has a short name

pointing to the meaning of the modification being modeled

in a formal way.

In the model represented in Fig. 4, modifications are

grouped into subsets whose names are "gColor", "tRNote",

"twoTables" and "priceLeft". For example, "tRNote" is a

short name derived as an acronym of "Table right and note

row"; "priceLeft" is for specifying a position and alignment

of the text showing a price; etc. These abbreviations are used

as names of modifications.

Fig. 4: An abstract model with subtyping via named modifiers

Example 5: Here we present a DSL script for TbBase,

TbSignle and TbMore tables and TxLeftTbMore text with

named modifiers. The script comprises three variants of the

template table definitions.

Template table TbSingle is not predefined using simple

properties. Instead, it is specified by means of the allowed

named modifiers from the DSL script over the TBase table.

The Base variant:

<TbBase>AD_1;;Notes...

<TxBase>Price...

The TbSingle variant:

<TbBase.gColor.trNote>AD_1;;Notes...

Final verision of LOGO for AD_3 is not ready

<TxBase>Price...

The TbMore variant:
<TbSingle.twoTables>AD_1;;Notes...

<TxBase.priceLeft>Price...

A definition of a modifier can also be generated and then

saved as a value of the global attribute "modifies", as it is

shown in Example 6.

Example 6: Modifiers and subtype definitions:

[Subtyping by named modifiers]

<TEMPLATE>=modifiers:"('gColor'=COLOR:Green;

'tRNote'=ROWS:7,COL_ALIGN(1):right;'twoTable

s'=MULT_RULE:2,COL_ALIGN(1):center,COL_ALIGN

(2):center;'priceLeft'=AL:left,POS:left;)"

<TbSingle>=INHER_FROM:TbBase,

ALLOWED_MODIF:(gColor;tRNote)

<TbMore>=INHER_FROM:TbSingle,

ALLOWED_MODIF:(twoTables)

<TxLeftTbMore>=INHER_FROM:TxBase,

ALLOWED_MODIF:(priceLeft)

By means of INHER_FROM property, a reference to a

base template is defined. A base template is the

superordinated template, from which subtypes are derived. In

our example, it corresponds to the table on the left hand side

of Fig. 2. In contrast to Example 3, there is no here

specifications of simple properties describing characteristics

of subtypes. Instead, variations of CU types are allowed by

means of ALLOWED_MODIF clause.

An advantage of this approach is a possibility to specify

allowed variations explicitly. These variations are domain

specific and often related to particular CUs and layout types.

In this way, we provide a possibility to extend the document

specification language with domain specific phrases. Well

defined named modifiers may direct developers how to

improve the modeling framework with new concepts and

operations. Target interpreters may also be customized by

introducing operations that are consequences of the

modifiers existence. An example is rendering of specific

table types. Suppose that we have some modifiers describing

table variations. During the rendering, they need to be

mapped to a set of primitive table drawing operations.

However, if the modifiers are used frequently, it is more

convenient to enhance the target interpreter by new functions

directly supporting these modifiers, instead of using sets of

primitive operations.

5.3. Modeling without object subtyping

Aforementioned subtyping approaches and already

presented abstract models of templates are not aimed at any

significant reduction of a number of templates being used.

On the contrary, by Example 7 and Fig. 5 we present another

approach that results in the smallest number of templates

being used. Subtypes are not given explicitly. Instead, each

modifier or a combination of modifiers is allowed to change

the base template. In this way, a massive creation of new

templates is avoided.

Example 7: A DSL script specifying instance data without

template subtypes is given:

<TbBase.gColor.trNote.twoTables>AD_1;;Notes

...

<TxBase.priceLeft>Price...

From the DSL script, only the TbBase table template is

referenced. Variations are referenced using named modifiers

gColor and trNote. The same holds for the TxBase text.

A template specification created from the abstract model

from Fig. 5 is slightly different from the one represented in

Example 6. It is of the form:

[Without object subtyping]

...

<TEMPLATE>=modifiers:"('gColor'=COLOR:Green;'

tRNote'=ROWS:7,COL_ALIGN(1):right;'twoTables'

=MULT_RULE:2,COL_ALIGN(1):center,COL_ALIGN(2)

:center;'priceLeft'=AL:left,POS:left;)"

<TbBase>=ALLOWED_MODIF:(gColor;tRNote;twoTabl

es)

<TxLeftTbMore>=ALLOWED_MODIF:(priceLeft)

Fig. 5: An abstract model without object subtyping

By combining modifiers, any layout variant of TbBase,

TbSingle or TbMore CU from Fig. 2 may be specified. From

the viewpoint of end users participating in the simple

document production, such DSL scripts are the most

convenient, since users are not overwhelmed by a large

number of templates. Besides, a number of named modifiers

necessary in practice is reduced usually to only a few ones,

whose names are not hard to remember.

All of the aforementioned cases of modifications, modifiers

and untypical instances are the ones for which both templates

and document instances can be modeled using just simple

properties. However, for practical reasons, we introduced

new domain-specific concepts at a higher level of

abstraction.

There are also cases for which document instances cannot

be modeled by means of the existing language concepts only.

In such cases, property values are to be controlled by

constraints. An example is a rule for the TbMore table from

Fig. 2, by means of a number of table columns and a table

cell distribution may vary, depending on the nature of input

data. To provide a specification of such constraints, the most

existing modeling languages are complemented with a

domain specific, or a general purpose constraint language.

For these purposes, however, in DVDocLang the

MULT_RULE property is used with a value set to a function

call, where the function implements the constraint.

By Example 8 we illustrate how to specify a constraint

over a CU type. An alternative way for this is based on a

DSL script. It is illustrated in Example 9.

Example 8: A constraint named LSLogoCount is specified

over the TbBase CU type by the following script:

[LSLogoCount]

if LS.LOGO.Count<1

<TbBase>=MULT_RULE:1

elseif LS.LOGO.Count>3

<TbBase>=MULT_RULE:3

elseif

<TbBase>=MULT_RULE:[func:LS.LOGO.Count]

endif

When [func:LS.LOGO.Count] stands for a property

value in the application of LSLogoCount, the real value is

calculated during the document rendering process, by

invoking the function [func:LS.LOGO.Count].

Example 9: By means of <TbBase>=MULT_RULE, we

predefine a layout of the TbBase CU type and create a

content of a document instance. A DSL script for the

TbMore table is given:

<TbMore>=MULT_RULE:2

<TbMore>AD_1;;Notes...

MULT_RULE:2 denotes that from one table, two new

tables with the same layout are created, while the content is

filled in the specified order.

Apart from constants and functions, values of properties

may also be complex expressions and comments.

Complex expressions may be defined as property values by

using embedded functions in DSL scripts. However, the real

values of these expressions are calculated during the

rendering process. Therefore, we introduce a concept of the

implementation script. The implementation script is

generated from a DSL script through the rendering process.

Despite that it contains all implementation details about the

document instance, such as physical details about sizes and

positions of pictures and fonts, it may be still independent of

the selected output format. However, it helps to calculate

real property values from previously defined complex

expressions. More about implementation scripts is given in

Section 6.

In Example 8, we deploy a complex function as a property

value. It is a function LS.LOGO.Count. By such kind of

expressions a user may influence both logical and

implementation document features, at the same time.

If the interpreter cannot resolve a property value or some

layout rule, it considers it just as comment.

If a user is not capable of precisely defining constraints,

then she or he may use some less restricting alternatives

introduced also by means of modifiers. Such special kind of

modifications is called "informal". The next example

illustrates a use of informal modifications.

Example 10: Here we present three variants of informal

modifiers for non-resolvable modifications. The first is a

comment given as the modifier name of a CU; the second is

a free comment; and the third is a reference to a picture:

<TbBase."Put in 3 columns">AD_1;;Notes

or

/* Fit tables in three columns */

or

<LOAD>http://Examples/PctExample.png

With respect to the level of formality, there is a crucial

difference between Examples 9 and 10. While the

modifications in Example 9 are used in a precise and formal

way (no matter that all layout parameters are not defined

yet), the modifications in Example 10 are completely

informal and can be used just as remarks. However, in the

process of model refinements for templates and document

instances, deploying informal modifiers may also be very

useful. Namely, if a user has knowledge about the business

activity creating a CU, informal modifiers may serve as

source information how to refine the DSL so as to provide an

automation of the activity.

5.4. Modifiers and multi-level modeling

Approaches in constructing a concrete syntax of the DSL

for the description of model variations are related to the

multi-level modeling approach []. In this regard, two

important characteristics of DVDocLang are: (1) it is a

language whose expressiveness is not limited to two levels of

abstractions only; and (2) by means of modifiers, it provides

specifying model variations at the same abstraction level, as

well as at the different levels of abstraction.

In our approach, modifiers are globally defined at the

level of a graph meta-concept, using the TEMPLATE

command, as it is presented in Example 11.

Example 11: A DSL script that illustrates modifiers and

deep instantiation is given:

(1) <TEMPLATE>=modifiers:m1(defm1),m2(defm2),…

(2) <C1>=p1:vp1;p2:vp2;…

(3) <C1>val_ic1

(4) <C1.p5:vp5>val_ic1

(5) <C2>=INHER_FROM:C1;…;p3:vp3;…

(6) <C2>=INHER_FROM:C1(2);…;p3:vp3;…;NO:p1

(7) <C2>=INHER_FROM:PathToFile.pdf;…;p3:vp3;…

(8) <C2>=INHER_FROM:repID;…;p3:vp3;p4:vp4,…

(9) <C2.ID:InstFromPDF>val_ic2

(10) <C3>=ALLOWED_MODIF:m1,m2;…;p5:vp5;…;NO:p3

(11) <C3>val_ic3

http://examples/PctExample.png

 A template command is given in Line (1). It is of the

form: <TEMPLATE>= modifiers: m1(defm1),

m2(defm2),..., where m1, m2,... are names of

modifiers, while defm1, defm2,... are their definitions. By

means of command <C1>=... in Line (2), a new language

concept, i.e. type is defined in an arbitrary state of the

document, even if the rendering has already started. To

construct a new type, a list of pairs of the form property:

default value: (p1: vp1, p2: vp2,...), needs to be

defined. An instantiation of the object type is shown in lines

(3), (4), (9), and (11). Object instances are uniquely

identified by their types and positions within a sequence of

commands. Alternatively, they may be identified by using an

alternative key of the form <CU.ID:altKey> value, as

it is presented in Line (9). Object values may be simple or

composite. Object instances may be further extended by

defining additional properties, as it is given in Line (4). A

designer may apply inheritance from: (i) a type, as it is

presented in Line (5); (ii) an instance, as it is presented in

Line (6); and (iii) a document in PDF or HTML format using

the file or identifier of the binary version in the repository, as

it is presented in Lines (7) and (8). Inheritance allows for

adding a new set of properties. At the same time, some of the

properties may be declared as inapplicable. Examples are

NO:p1 and NO:p3, given in Lines (6) and (10). For each

type declaration, no matter whether it is a base or a subtype,

a designer may restrict the application of modifiers, i.e.

document variations, by defining a list of allowed modifiers,

by means of ALLOWED_MODIF property. An example is

given in Line (10). In the same way, further propagation of

properties to subtypes may also be restricted.

DVDocLang provides the concept of deep instantiation by

means of its incremental specification. The incremental

specification is fully supported by the dynamic construction

of types, as it is presented in Lines (2), (5-8) and (10) of

Example 11. In contrast to the concept of deep instantiation

supported by DeepJava [21, 37], DVDocLang even does not

impose the specification of a level to which attributes can be

propagated. Herewith, it is allowed to apply refined DSL

models dynamically, onto document instances whose

lifecycle has already begun, where some CUs are already

rendered.

In the following text we illustrate an application of multi-

level modeling principles in DVDocLang that are based on

the use of modifiers. We give a presentation of multi-level

modeling through a comparison of the approaches based on

an UML extension for deep instantiations and DVDocLang.

To do that, in Fig. 6 we present to models. The first one,

placed in the left hand side of Fig. 6, is a slightly modified

example taken from [37]. It is an example of deep

instantiation based on a UML extension. The numbers given

in the left hand side of each class, next to each class name

and each of its attributes, represent potencies. The notion of

potency is used to specify the level to which the instantiation

is allowed.

To illustrate our approach to the same model, we recall

Example 7 and Figure 5, in which modifiers were applied to

model untypical instances with a minimal number of

templates. There, as well as in other previously presented

abstract models, we used subtype relations with the S symbol

put inside diamonds. In the abstract model given in the right

hand side of Fig. 6, a new language concept, named

modification is used. A modification is represented in the

diagram placed at the right-hand side of Fig. 6 by diamonds

with the M symbol inside. Such kind of relationship

Fig. 6: UML deep instantiation vs. DVDocLang modifiers

combines an inheritance with instantiation. Semantics of a

modification is expressed at the level of the subtype or

instance of an object, following the roles of properties in the

modifiers. Modifiers are represented in the diagram by the

 symbol. The roles may be: instance, denoted with the (:)

symbol; new attribute, denoted with the (+) symbol; or

inapplicable property, denoted with the (-) symbol. The first

two roles are intuitively clear as they are available with the

same meaning in the majority of contemporary modeling

languages. The inapplicable property role is introduced as a

counterpart of the potency concept from the UML extension.

However, it does not require predefining the allowed depth

of the instantiation and does not restrict any attribute to be

applicable again to some subtype or instance.

A 1:1 mapping of a model to the resulting DSL script is

established by the M2T transformation from Example 2. By

this, we have a possibility to create an unambiguous reverse

transformation of the code to the model.

As an example, for the DVD segment of the model from

Fig. 6, a variant of the resulting DSL script may be:

(1) <ProductType>=price:Float;taxRate:Integer

(2) <DVD.FROM:ProductType;mediaSize:Float>taxRate:19

(3) <2001.FROM:DVD>price:19.95; mediaSize:4 GB

(4) <Free 2001.FROM:2001; -taxRate>mediaSize:5 GB

(5) <DVD.mediaSize>price:19.95; mediaSize:3 GB

(6) <2001>price:19.95; .mediaSize:3 GB

The first, a base type ProductType is declared by Line

(1). Then, a DVD class/instance modifier is defined in Line

(2). It introduces a new attribute mediaSize. From DVD, a

new 2001 modifier is derived by Line (3). The values of the

price and mediaSize are also given. Free 2001 is a

modifier given in Line (4). It removes the taxRate

attribute, since the DVD is free of charge because of 1GB of

advertisements, added to its main content. In Lines (5) and

(6), two instance constructors of the 2001 type are given.

A selection which of available approaches (illustrated by

the previous examples and Figures 3, 4, 5, and 6) is to be

applied in a given scenario is not just a matter of free

designer's decision. In practice, it depends on the level of

current knowledge about the document types and specifics of

the document production process. In an initial stage of this

process, template models are usually created by use of

simple properties. Latter, as the process gets more matured,

template models evolve by including named modifiers,

reducing the number of necessary templates and specifying

relationships between modifiers and business activities. A

possibility to formally specify relationships between CUs,

templates and business activities by means of some DSL

allow for a complete and clearly understandable

specification of the dynamic characteristics of a system being

modeled [18].

In the document production process, we may expect that

modeling DSLs also evolve as their template models. There

is also an emergent requirement to provide various forms of

the concrete syntax of the same DSL made for different

categories of users. In Section 6 we discuss in more details

the process of refinement of a modeling DSL and template

models.

6. A Refinement of Templates and DSLs

In the document production management, as well as in the

model-driven software development, one of the common

issues is a feedback that enables refinement of template

models from document instances and DSLs from template

models. In DVDoc Approach, we provide automated

refinement of templates and DSLs based on the following

assumptions: (i) a DSM tool is used to provide the document

instance production, where each instance (produced either in

PDF or HTML format) contains meta-data including

specifications of both meta-model and model; (ii) documents

are modeled using the DVDocLang coupled with the

appropriate application providing variants of DSL scripts.

All of this makes the document production process faster;

and (iii) semantics of modifiers, particularly the named ones,

can easily be redefined. It makes possible to keep a

compatibility with previous models, while DSL is changed.

A notion of DSL script or Logical script (LS) is used here

to denote a document or template model as a textual DSL

specification. It is also a semantic equivalent of a Platform

Independent Model (PIM) specification created by means of

a graphical DSL. Therefore, in our approach, PIMs are also

specified by DSL scripts. They are transformed into Platform

Specific Models (PSMs) by means of DVDocRender in two

ways. The first one results in an implementation script (IS)

for an idealized interpreter or renderer denoted as ISI, while

the second one results in an implementation script for a

concrete interpreter, denoted as ISC. The main reason why a

user identifies some instance as untypical is in inability of its

modeling at the level of a LS. However, other reasons may

also be related to inappropriate transformations of the LS to

an ISI or the ISI to an ISC.

Here we present a template refinement within a context of

document production process. Template refinement is a

process of transforming one model to some other, which

allows for simpler and more precise specification of a larger

class of instances. The refinement of templates as document

type models is often combined with the refinement of: (i) the

modeling language; (ii) existing document instances; (iii)

code generators (reports); (iv) target interpreter; or (v)

modeling applications.

A generic refinement model is outlined in Fig. 7. In single

document production users (User1, …, UserN) produce LSs,

denoted as <LS>. They do this by using different client

applications, such as DVDocPainter, Structured-text Editor

or even a simple text editor. The applications are template

driven. Template models are stored at the Template Server.

By this, a time needed to obtain templates and their instances

so as to merge them with document instance specific data is

significantly reduced [13]. The target interpreter

DVDocRender merges a script specifying a document

instance with a template instance. This process is called

script merging. After that, DVDocRender generates

documents. This process is called document rendering. By

this, DVDocRender produces as its outputs: figures, PDF or

HTML documents, implementation scripts in both variants –

ISIs and ISCs. Under specific circumstances, it is also

possible to generate applications. An IS comprises all

implementation properties of a document, as well as the

relationships to the corresponding LS, and further to its

original model expressed by means of the graphical DSL.

A relationship between a LS and the generated IS is

similar to the relationship between an abstract model and the

generated code. In order to provide inverse transformations

from concrete to abstract models (T2M), we provide in the

direct M2T transformation that all IS elements will keep a

relationship to their origin in LS. Therefore, we provide

bidirectional and unambiguous transformations between LSs

and ISs. They are performed by means of the same

algorithm. A feedback from the generated code to the model

is provided by:

Fig. 7: A generic refinement model

 Action reports [31], i.e. transformations that are similar to

MERL reports;

 Introducing the concept of a state in a language for M2T

transformations [20, 25, 26]. States are used for

synchronization of target interpreter activities, operations

on models, and model execution steps; and

 Using a domain-specific query language which provides

executing queries over logical and implementation

document properties existing in models and generated

code.

In DVDoc Approach, the DVQL [19] is used to perform

analyses of ISs and LSs. Such analyses are aimed at

identifying modifications, their classification by document

types and users being applied them, as well as their breaking

into atomic properties for the purpose of their re-grouping.

In general, an analysis of a LS may be specified by the

two functions. The first one tackles templates, while the

second one the LSs of already produced documents, as it is

illustrated by the following example:

temDef' = f1(IS,LS,modifiers,temDef,dsl) and
LS' = f2(IS,LS,modifiers,temDef,dsl).

Our intention is not to explain here the specifications of

the functions f1 and f2 in detail, since they are too

complex. In the example, f1 and f2 are used to retrieve

temDef' and LS' scripts, merge them and, by repeated

rendering, generate the implementation script that preserves

the document layout from any changes. At the same time,

they also provide a better use of existing DSL concepts. In

this way, temDef' and LS' are simplified and expressed by

means of more precisely defined domain-specific phrases. In

this form, they are used for the refinement of template

models, mostly through the approach reaching the minimal

number of templates, as it is illustrated by the model in Fig.

5. Finally, the new template is declared as the current one

and stored at the template server.

For the purpose of faster script merging, i.e. merging of

document instances with template instances, the template

server buffers both template and named modifier instances in

the working memory. By our practical experience and

performed measurements, it reduces the time needed for

rendering up to 30% [13]. In this way, the buffering provides

faster access to those document types and their variations

expressed by named modifiers that are predominantly

produced in a given period of time.

7. DVQL and Document Analyses

In this section we outline our document specific query

language DVQL. It is a declarative modeling language

providing queries and manipulation over meta-models,

models and instances, i.e. the appropriate textual

representations of types, modifications and document

instances. By this, it is a language scoped not only with

PIMs, but also with PSMs. Detailed specification of DVQL

with the appropriate examples is given in [19].

By incorporating transformation formulas into the DVQL

definition, an easier construction of test cases for model

checking would be provided. A construction of

transformations, i.e. generators becomes just a programming

activity by the use of DVQL. For the purposes of our

approach, however, the use of DVQL as a language

embedded into MERL or DVDocRepLang is much more

important, because it enables full automation of refinement

process, as depicted in Fig. 7.

All documents rendered by DVDocRender are given in

penta-format [5, 7, 9], by means of content, structure, layout,

behavior and meta-data are defined. DVQL commands are

most often executed over larger sets of LSs, which we

observe as one script and call it a batch script. Operations

executed by DVQL may change specifications given as LSs,

ISIs, ISCs, PDFs or HTMLs. Apart from this purpose,

DVQL is used to specify constraints or implement complex

user services. DVQL consists of the following four units:

 Common Command Language (DVQL-C);

 Document Template Language (DVQL-T);

 Logical Script Language (DVQL-L); and

 Document Language (DVQL-D).

The syntax of DVQL is created so as to mimic the SQL

syntax. Besides, it enables queries over both relational and

hierarchical structures.

We also introduced the following special data types into

DVQL: TemplDef – a string representing a template

definition; BookDef – a list of strings representing a

definition of a book, i.e. set of templates; InpScr – a string

representing a LS; BatchScr – a list of strings representing a

collection of LSs; ImpScr – a string or an XML structure

representing an IS; and DocScr – a list of strings or an XML

structure representing a collection of ISs.

As most of the other programming languages, DVQL has

also standard operators and embedded functions. It enables

referencing to all object types that are the instances of

DVDocLang concepts, such as: LS, Book, Template, CU

type definition, command, command structure, IS, item,

global attribute, element attribute (i.e. property), modifier,

logical page, implementation page, document state, etc.

DVQL provides variety of specific operators. Some of them

are division, union, intersection and difference of scripts,

books and document collections. In the following example,

we illustrate the use of DVQL on a LS.

Example 12: Here we present a LS that specifies the header

of the "Offer" document type from Figures 2 and 8. The LS

contains named modifiers for colors and fonts: s4, f8, s1,

s17, s4, s13, as well as unnamed modifiers, i.e. simple

properties, for the element positions and text alignments:

POS and AL:

<TI.s4.f8.POS:XY(20;15)>DVDocGen Framework

<PZ.s1.POS:XY(20;41)>Djukic Verislav,

Gärtnerstr. 17, D-90408 Nürnberg

<AD.s17.POS:XY(20;47)>Company

Djukic Software Solutions

Gärtnerstr. 17

D-90408 Nürnberg

<SX.s4.AL:left,POS:XY(20;91)>Offer

<TX.AL:right,POS:XY(193;91)>Nürnberg, ...

<TX.s13.AL:left,POS:XY(20;98)>Nr. 434

The following query presents all element modifiers (EM)

that are the first with their position in the list (M.1), for all

types of CUs, from all LSs that belong to the current batch

script (BSCR):

SELECT BSCR.<*>.EM.<*>.<*.*.M.1>

The elements of the LS given above that are referred by this

query are bolded. A short form of the result obtained by the

query execution is:

s4.s1.s17.s4 'AL:right,POS:XY(193;91)'.s13

while the basic form of one n-tuple is:

('em','B','T','1','B','T','1','1','<TI>','1

','s4','DVDocGen Framework')

Each element of the query result set is an n-tuple that

contains: an identifier of the CU type, the name of the book,

the name of the template, the ordinal number of the LS, a

reference to the other book and template related by the CU,

the page number, the ordinal number of the element in LS,

the ordinal number of the element of the same type, the

modifier and the value. These n-tuples, no matter whether

their origin is a LS or IS, can be transformed into LS or IS

without loss of information. These bidirectional

transformations are used for the refinement of templates and

already existing document instances.

A frequent use of the same modifiers, as it was the case in

Example 12 with the named modifiers for colors and fonts:

s4, f8, s1, s17, s4, s13, leads to a solution in which the

default values should be assigned to the logical fonts for the

appropriate CUs, in the base template definition. The same

holds for unnamed modifications for the position and

justification, expressed by POS and AL. However, if the

modifiers are not to be applied to all document instances,

then a subtype should be introduced by using some of the

approaches presented in Section 5. By this, such document

instance is produced by means of a semantically equivalent

script of the form:

<TI[.mod1]>DVDocGen Framework

<PZ[.mod2]>Djukic Verislav, Gärtnerstr. 17,

D-90408 Nürnberg

...

Semantics of modifications is specified through a model

by means of the DSM tool. For the first line of the LS from

Example 12 the equivalence: mod1 s4.f8.POS:

XY(20;15) holds. Such semantic relationships together

with meta-data embedded into each document instance,

provide the refinement of previously generated document

instance without loss of information. A further analysis of the

LS from Example 12 may lead to the conclusion that in some

cases mod1 is to be divided into mod1_1 and mod1_2.

One of such cases is when mod1_2 is applicable on

<PZ[.mod2]>.

8. A Tool for Creating Abstract Template

Models

In this section we outline just main characteristics of our

DSM application in document engineering, for creating

formal template specifications.

To adequately support a template modeling activity, we

have developed a specialized graphical editor for drawing

templates. It is named DVDocEditor. A screenshot of its

main window is presented in Fig. 8. To support generating

code from the abstract templates, we have developed

DVDocRepLang [28, 20] and coupled it with DVDoc

Integrated Development Environment (DVDocIDE).

Fig. 8: DVDocIDE with DVDocEditor and code generators

General-purpose editors of the kind are mostly oriented to

defining document layout styles. However, DVDocEditor

allows for specification of CU semantics. Furthermore, it

provides the concepts of a role, port, relationship and

property. It also provides more than fifteen groups of layout

controls that are used to specify text layouts, tables, figures,

bar-codes, etc. Apart from explicitly defined properties,

DVDocEditor provide an access to all properties supported

by the .NET framework controls. In this way, we provide

generating graphical components of applications as in [22].

By DVDocEditor, CUs may be related to particular

activities in a document lifecycle. This allows for basic

modeling of dynamic system characteristics and document

lifecycle [18].

The following advances of DVDocEditor are the

consequences of providing a code generator and a language

for the code generation into the DVDocEditor template

editor:

 A possibility to define various patterns for the document

structure validation;

 A possibility of generating Web or Windows applications;

 A simple definition of new domain-specific phrases, i.e.

modifiers;

 A generation of parts of template specifications that are

not supported by graphical editor;

 A management of template versions at a higher level of

abstraction;

 A possibility to create various and significantly different

templates from one model diagram; and

 A systematic template refinement.

A full formal specification of DVDocRepLang and

examples of defined generators may be found in [20].

9. Conclusion

An application of DSM in the Document Engineering,

which includes the development of DSLs and tools for

modeling documents and their templates, may significantly

contribute to resolving the problem of producing untypical

document instances. The practical benefits of such approach

are wide and involve deploying of a consistent development

methodology, languages and tools for document modeling,

and particularly for specification of model variations. The

main practical advantages of the application of our DVDoc

Approach in the document production process are the

following:

 By using DSL script as a domain-specific instead of a

general purpose specification, we raise the efficiency of

the creation and refinement of template definitions and,

consequently the document production process in general;

 At the level of a code generator, we provide simple

transformations of document templates as abstract

specifications into arbitrary target specifications.

Transformations into XSL styles are just one of the

examples; and

 Semantic based template editors are much more powerful

modeling tools, than the editors aimed at defining layout

styles or topological relationships only.

Our further research work is aimed towards automated

generation of semantic template editors for different

application domains. One of the research directions is

enabling incremental specifications and incremental

generators to be used in modeling dynamic characteristics of

a system by means of executable software models. By this, a

better support to modeling and execution of complex

business activities is provided. Also, we plan to improve

DVDoc Approach to the level of a full application of multi-

level modeling principles, so as to overcome shortcomings of

current environments, based mostly on XSL-FO language.

10. Аcknowledgement

The authors would like to kindly thank Juha-Pekka

Tolvanen from the University of Jyväskylä for his valuable

support and proof reading.

11. References

[1] Steven Kelly, Juha-Pekka Tolvanen,

"Domain-Specific Modeling: Enabling Full Code Generation",

ISBN: 978-0-470-03666-2, March 2008, Wiley-IEEE Computer

Society Press.

[2] Robert J. Glushko, Tim Mc Grath, "Document Engineering", MIT

Press 2008.

[3] PdfLib for creating PDFs, http://www.pdflib.com/

AbcPdf library for creating PDFs, http://www.websupergoo.com

[4] MetaEdit+ Workbench, "Workbench User’s Guide"

http://www.metacase.com/support/45/manuals/mwb/Mw.html

[5] Di Iorio, A. "Pattern-based Segmentation of Digital Documents:

Model and Implementation, Ph.D. Thesis", UBLCS-2007-05,

Department of Computer Science, University of Bologna, 2007.

[6] Verislav Djukic, "DVDocLang Language Reference",

www.dvdocgen.com/Framework/DVDocLang.pdf

[7] Antonina Dattolo, Angelo Di Iorio, Silvia Duca, Antonio A. Feliziani,

Fabio Vitali, "Structural patterns for descriptive documents",

Proceedings of the 7th international conference on Web engineering,

Italy, Lecture Notes In Computer Science, 2007

[8] Ivan Lukovic, Verislav Djukic, "DVDocLang vs. XSL-FO”,

www.dvdocgen.com/Framework/DVDocLang_XSL-FO.pdf

[9] Angelo Di Iorio, Luca Furini, Fabio Vitali, "Higher-level Layout

through Topological Abstraction", ACM DocEng 2008

[10] Apache Software Foundation: "FOP", http://xmlgraphics.apache.org/

fop/0.95/index.html

[11] Microsoft Extensible Application Markup Language (XAML)

http://xml.coverpages.org/ms-xaml.html

[12] User Interface Markup Language (UIML)

http://www.uiml.org/

[13] Verislav Djukic, "DVDoc Renderer Benchmak",

 http://www.dvdocgen.com/Framework/DVDocRenderBench.pdf

[14] Kosar T., Oliveira N., Mernik M., Pereira M. J. V., Črepinšek M.,

Cruz D., Henriques P. R., "Comparing General-Purpose and Domain-

Specific Languages: An Empirical Study", Computer Science and

Information Systems (ComSIS), ISSN: 1820-0214, Vol. 7, No. 2, May

2010, pp 247-264.

[15] Verislav Djukic, "DVDocGen Framework, application interface",

http://www.dvdocgen.com/Framework/DVDocFramework.pdf

[16] OMG Model Driven Architecture, http://www.omg.org/mda/

[17] Exstensible Stylesheet Language, Formatting Objects (XSL-FO),

Reference Manual, http://www.w3.org/TR/xsl/.

[18] Verislav Djukić, Ivan Luković, Aleksandar Popović, "Domain-

Specific Modeling in Document Engineering", Proceedings of the

Federated Conference on Computer Science and Information Systems,

Poland, 2011

[19] Ivan Lukovic, Verislav Djukic, "DVQL Language Specification",

www.dvdocgen.com/Framework/DVQL.pdf

www.dvdocgen.com/Framework/DVQLDemo.wmv, video

[20] Verislav Djukić, Aleksandar Popović, "DVDocRepLang grammar

specification",

www.dvdocgen.com/Framework/DVDocRepLang.pdf

[21] Colin Atkinson, Thomas Kühne, "The Essence of Multilevel

Metamodeling", Proceedings of the 4th International Conference on

The Unified Modeling Language, Modeling Languages, Concepts,

and Tools, Springer-Verlag London

[22] Tony Clark, Andy Evans, Stuart Kent, "Aspect-oriented

Metamodelling", The Computer Journal, 46 (5), 2003, pp 566-577.

[23] Olivier Beaudoux, Arnaud Blouin, Jean-Marc Jézéquel, "Using Model

Driven Engineering technologies for building authoring applications",

ACM Symposium on Document Engineering 2010: 279-282

[24] Ber hard Rumpe, Robert France, "On the relationship between

modeling and programming languages", Editorial for the SoSyM Issue

2012/01: Part 1.

[25] Benjamin Klatt, "A Closer Look at the model2text Transformation

Language", http://wiki.eclipse.org/Model2Text_using_

Xpand_and_QVT_for_Query

[26] Verislav Djukić, DVDocRepLang demo, video

http://www.dvdocgen.com/Framework/ModelTransformation.wmv

[27] Verislav Djukić, DVDocFlowLang demo , video

http://www.dvdocgen.com/Framework/DVDocFlow.wmv

[28] Verislav Djukić, Using DVDocIDE , video

http://www.dvdocgen.com/Framework/UsingDVDocIDE.wmv

[29] Verislav Djukić, Using MetaEdit+ from DVDocIDE , video

http://www.dvdocgen.com/Framework/DVDocIDEMetaEditCtrl.wmv

[30] Verislav Djukić, Marko Bošković, Aleksandar Popović, Ivan Luković

"Using Domain-Specific Modeling for Integration of Heterogeneous

Business Activities", Internal Report, 2012,

http://www.dvdocgen.com/Framework/IntegrateHeterBA.pdf

[31] Verislav Djukić, Marko Bošković, Aleksandar Popović, Ivan Luković

"Using Action Reports for Testing Meta-models, Models, Generators

and Target Interpreter in Domain-Specific Modeling", Internal Report,

http://www.dvdocgen.com/Framework/ActionReports.pdf

[32] Tolvanen, J-P., Kelly, S., "Integrating Models with Domain-Specific

Modeling Languages". Procs of 10th Workshop on DSM, Reno,

Nevada, USA, Helsinki Business School, 2010.

[33] Atzmon Hen-Tov, David H. Lorenz, Assaf Pinhasi, Lior Schachter:

"ModelTalk: When Everything Is a Domain-Specific Language".

IEEE Software 26(4): 39-46 (2009)

[34] Dae-Kyoo Kim, Robert B. France, Sudipto Ghosh: "A UML-based

language for specifying domain-specific patterns". J. Vis. Lang.

Comput. 15(3-4): 265-289 (2004)

[35] Common Variability Language (CVL), CVL 1.2 User Guide,

http://www.omgwiki.org/variability/doku.php

[36] Christian Schaefer, Thomas Kuhn, Mario Trapp, "A Pattern-based

Approach to DSL Development", SPLASH '11, Workshops on

DSM'11, Proceeding.

[37] Thomas Kühne, Daniel Schreiber, "Can Programming be Liberated

from the Two-Level Style? Multi-Level Programming with

DeepJava", ACM SIGPLAN IOOPSLA'07.

http://www.pdflib.com/
http://www.dvdocgen.com/Framework/DVDocLang.pdf
http://www.dvdocgen.com/Framework/DVDocLang_XSL-FO.pdf
http://xmlgraphics.apache.org/
http://www.dvdocgen.com/Framework/DVDocRenderBench.pdf
http://www.omg.org/mda/
http://www.w3.org/TR/xsl/
http://www.dvdocgen.com/Framework/DVQL.pdf
http://www.dvdocgen.com/Framework/DVQLDemo.wmv
http://wiki.eclipse.org/Model2Text_using_
http://www.dvdocgen.com/Framework/DVDocIDEMetaEditCtrl.wmv
http://www.omgwiki.org/variability/doku.php

